# TreeKnit <br> Inferring Ancestral Reassortment Graphs of influenza viruses 

Pierre Barrat-Charlaix

Team of Richard Neher

## Evolution of influenza: Mutations and reassortment



## Evolution of influenza: Mutations and reassortment



## Reassortment



- Segmented genome:
each gene has one ancestor
- Large move in sequence space
- Non tree-like genealogy


## Reassortment in influenza

- Combines strains from different subtypes, or from human/animal hosts.
- Origin of many pandemics
- Asian flu - 1957
- Hong Kong flu - 1968
- H1N1 pandemic - 2009
- Also happens at "smaller" scale: within a subtype.
- How often does it happen?
- Contribution to immune escape and $\longrightarrow$ ? adaptation?


## Reassortment



- Large move in sequence space
- Non tree-like genealogy

Why is the genealogy not tree-like?


## Why is the genealogy not tree-like?



## Ancestral Reassortment Graph



Genealogy of first gene

## Why is the genealogy not tree-like?



## Inferring reassortments / Reconstructing the ARG

## Existing methods

- Manual inspection of trees
(e.g. [Holmes et. al. 2005], [Boni et. al. 2010])
- Methods based on genetic distance [Rabadan et. al. 2008]
- Trees + mutation methods [Villa \& Lässig 2017]
- Tree topology based methods [Nagarajan \& Kingsford 2011]
- Bayesian methods [Müller et. al. 2020] $\longrightarrow$ Accurate but slow
$\rightarrow$ No "reference" method

We want something that is

- Fast : can be easily applied to new sequences
- Finds all reassortments, and not only large obvious ones
- Works for the 2-genes case (simplicity)


## Inferring the ARG: the Treeknit method

— Tree of segment 1
— Tree of segment 2
Individual segment trees


Main idea :

- The ARG is a collage of gene trees
- We can infer each tree from sequences (iqtree, RaxML, ...)
- Topological differences between these trees are due to reassortment
- Method based on topological differences between trees


## Inferring the ARG



## Maximally compatible clades (MCCs)

The ARG is a collage of gene trees


## Maximally compatible clades (MCCs)

The ARG is a collage of gene trees


## Maximally compatible clades (MCCs)

The ARG is a collage of gene trees


## Inferring the ARG $\longrightarrow$ Inferring MCCs

First step: naive estimation of MCCs

- Take clades that have exactly matching topologies



## Inferring the ARG $\longrightarrow$ Inferring MCCs

First step: naive estimation of MCCs

- Take clades that have exactly matching topologies


Here : 5 naive MCCs

- A
- B1, B2
- C1, C2
- D1, D2


5 reassortments !

## Inferring the ARG $\longrightarrow$ Inferring MCCs

First step: naive estimation of MCCs

- Take clades that have exactly matching topologies


Naive estimation :
Finds too many MCCs $\longrightarrow$ Too many reassortments
Conservative approach $\longrightarrow$ Does not overextend MCCs

## Inferring MCCs



## Inferring MCCs: Parsimonious approach



Second step: "reduce" to naive MCCs


By eye:
D is the reassorted clade. How can we formalize this?

Surrounding of each leaf: clade defined by parent:

- $\mathrm{A} \longrightarrow(\mathrm{A}, \mathrm{B}) /(\mathrm{A}, \mathrm{D}) \quad \mathrm{D} \longrightarrow(\mathrm{D}, \mathrm{E}) /(\mathrm{A}, \mathrm{D})$
$\cdot B \longrightarrow(A, B) /(A, D, B) \quad E \longrightarrow(D, E) /(C, E)$
- 5 incompatibilities
- $\mathrm{C} \longrightarrow(\mathrm{C}, \mathrm{D}, \mathrm{E}) /(\mathrm{C}, \mathrm{E})$


## Inferring MCCs: Parsimonious approach



First step: "reduce" to naive MCCs


By eye:
D is the reassorted clade. How can we formalize this?

Surrounding of each leaf: clade defined by parent:

- $A \longrightarrow(A, B) /(A, D)$
- D $\longrightarrow(\mathrm{D}, \mathrm{E}) /(\mathrm{A}, \mathrm{D})$
- $B \rightarrow(A, B) /(A, D, B)$
- $\mathrm{E} \rightarrow(\mathrm{D}, \mathrm{E}) /(\mathrm{C}, \mathrm{E})$
- 5 incompatibilities
- $\mathrm{C} \longrightarrow(\mathrm{C}, \mathrm{D}, \mathrm{E}) /(\mathrm{C}, \mathrm{E})$

Hypothesis: D is a reassortant $\longrightarrow$ Remove it from the trees

- $A \longrightarrow(A, B) /(A, B)$
- $B \rightarrow(A, B) /(A, B)$
- $\mathrm{C} \longrightarrow(\mathrm{C}, \mathrm{E}) /(\mathrm{C}, \mathrm{E})$
$\cdot \rightarrow \longrightarrow(B, E) /(A, D)$
$\cdot E \rightarrow(C, E) /(C, E)$
- $\mathrm{E} \longrightarrow(\mathrm{C}, \mathrm{E}) /(\mathrm{C}, \mathrm{E})$
- 0 incompatibilities

0 remaining reassortments!

## Inferring MCCs

For each leaf $\boldsymbol{n}$
$\rightarrow \sigma_{n} \quad \begin{aligned} & 1 \text { if we remove } \boldsymbol{n} \\ & 0 \text { otherwise }\end{aligned}$
$\longrightarrow \vec{\sigma}=\left(\sigma_{1} \ldots \sigma_{L}\right) \quad:$ "configuration" vector
$\rightarrow \Delta(n, \vec{\sigma})<1$ if incompatibility above $n$

## Inferring MCCs

For each leaf $\boldsymbol{n}$
$\rightarrow \sigma_{n}<\begin{aligned} & 1 \text { if we remove } \boldsymbol{n} \\ & 0 \text { otherwise }\end{aligned}$

$\longrightarrow \vec{\sigma}=\left(\sigma_{1} \ldots \sigma_{L}\right) \quad:$ "configuration" vector
$\longrightarrow \Delta(n, \vec{\sigma}) \quad \begin{aligned} & 1 \text { if incompatibility above } n \\ & 0 \text { otherwise }\end{aligned} \quad$ \# of incompatibilties
\# of removed leaves

## Comparison w. other methods

GiRaF: topology based [Nagarajan \& Kingsford 2011]

\(\left.\begin{array}{|c|c|c|c|}\hline \& \& CoalRe \& GiRaF <br>
\hline Runtime \& \begin{array}{c}Inferring <br>

trees\end{array} \& \& 20 \mathrm{~min}\end{array}\right]\) Treeknit | Inferring <br> the ARG | -hours | 40 s |
| :---: | :---: | :---: |

for 100 leaves

## Application: resolving trees, inference

Shared regions of the ARG $\longrightarrow$ ~ doubled sequence length

- Better resolved trees
- Better inference of branch length, dates of internal nodes, etc...


## Application: resolving trees, inference

Shared regions of the ARG $\longrightarrow$ ~ doubled sequence length

- Better resolved trees
- Better inference of branch length, dates of internal nodes, etc...


## Application: disentangling tanglegrams



Without the knowledge of reassortments: hard problem

## Application: disentangling tanglegrams



With the knowledge of reassortments: easy

## Summary

Results

- Treeknit: Heuristic to infer ARGs from two trees
- Fast runtime
- Good performance on simulated data for all reassortment rates


## Applications / challenges

- Resolve trees
- Inference on the ARG
- Visualisation: disentangle tanglegrams
- Knowledge of the ARG $\longrightarrow$ Effect of reassortment on influenza evolution
- Apply to more than two segment trees


## Thank you for listening!

## Interpretation of gamma

$$
N_{\gamma}(\vec{\sigma})=\sum_{n \in l e a v e s} \Delta(n, \vec{\sigma}) \sigma_{n}+\gamma(L-|\vec{\sigma}|)
$$

$\bullet \gamma \rightarrow \infty \quad$ Infinite cost for removing leaves $\longrightarrow$ Naive approach
$\bullet \gamma=1 \quad N(\vec{\sigma})=$ \# incompatibilities + \# removed leaves


Reassortments w. naive approach
Enforced reassortments
$N(\vec{\sigma})=$ Total number of reassortments $\longrightarrow$ "Parsimonious" approach
$\bullet$ Intermediate $\gamma \longrightarrow$ Interpolate between naive and "parsimonious"

