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Evolutionary 
constraints

Statistical modeling of protein sequences

Information?

Protein family Multiple Sequence Alignment
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• Functionally important positions 
• Homology detection (HMM) 
• Unable to capture relations between columns 

Profile models

Evolutionary 
constraints



Evolutionary 
constraints
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Global statistical models



Evolutionary 
constraints

• Prediction of mutational effects
• Generative model
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Global statistical models

• Intra/Inter protein contacts 
• Protein-protein interaction

P (a1, . . . , aN ) =

1

Z
exp

0

@
LX

i,j=1

Jij(ai, aj) +
LX

i=1
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1

A Direct Coupling 
Analysis (DCA)



Global statistical models : the Potts model
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Global statistical models : the Potts model

P (a1, . . . , aN ) =
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Disentangling correlations Maximum entropy modeling

… while reproducing pairwise 
statistics of data

Pij(a, b) = fij(a, b)

Model with maximal entropy …
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Global statistical models : the Potts model
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Disentangling correlations Maximum entropy modeling

… while reproducing pairwise 
statistics of data

Pij(a, b) = fij(a, b)

Model with maximal entropy …
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? Inference based on
approximations

Black box modelization?

Why?



Understanding the model

Highly accurate implementation of the inference
Boltzmann Machine Learning (BM)

Analysis of the indirect effects
• Network of direct couplings? 
• Biological interpretation?

Limitations of the model?

• Reproducing non-fitted features of the data? 
• Need of higher order couplings?

Learned on the  
10 largest pfam families



Analysis of indirect effects

Direct Information
Strength of the direct coupling

Mutual Information

Quantifying direct effects

Quantifying indirect effects

Path Information
Effective coupling for a path

Chain of direct couplings!

J1,3

J1,2

J2,4
J4,3
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Collective effects?
hPI(rank)i / rank�⌫How fast does path info. decrease?

Strongest path  
~ 

Direct path

Computed on ~100 strongly  
correlated pairs

Collective effect of numerous paths



We need to combine multiple paths!

Paths of length 2 are independent

P ij
2 / P dir

ij ·
Y

k 6=i,j

P path ([i k j])

Strong ‘length 2’  effect

Strong direct coupling contact

Two contacts 
away

?

Length 2 Information
Effective coupling for all

paths of length 2 (+ direct)
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Geometrical interpretation of indirect effects
Predicting proximity using different scores

Fit of the form

Compatible with 
second structural 
neighbor!

PPV = 1� exp (�d/d0)

Fraction of the 25 top  
scoring pairs distant 
of less than d angstroms



Limitations of the DCA model?

• How well does the DCA model capture information  
 in the alignment? 

• Does one need higher order couplings to fully describe  
statistical features of the data?

Compare observables which are not a direct 
consequence of the fitting procedure!



Three points connected correlations

Cijk(a, b, c) =fijk(a, b, c)� fij(a, b)fk(c)

�fik(a, c)fj(b)� fjk(b, c)fi(a)

+2fi(a)fj(b)fk(c)

Pearson correlation

BM

Profile model
Pfam MSA
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Sequences in principal component space

Projection of sequences on the  
first two principal components  
of the natural alignment

Higher order quantity

Nat

Ind. model BM



Limitations of the DCA model?
Inferred DCA models capture non-fitted statistical 
features of the natural sequences 

• Three points connected correlations 
• Global quantities (projection on PC’s, hamming distance  

distribution)

Pairwise couplings appear sufficient to capture 
variability in sequences of a protein family!

… which opens the way to protein design.
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Inferred DCA models capture non-fitted statistical 
features of the natural sequences 

• Three points connected correlations 
• Global quantities (projection on PC’s, hamming distance  

distribution)

Pairwise couplings appear sufficient to capture 
variability in sequences of a protein family!

… which opens the way to protein design.

Thank you!


