How pairwise coevolutionary models capture the collective residue variability in proteins

Matteo Figliuzzi, Pierre Barrat-Charlaix, Martin Weigt

Statistical modeling of protein sequencesProtein familyMultiple Sequence Alignment

YHCDKCSMSFAAPSRLNKHMRTH HKCSYCSKAFIKKTLLKAHERTH -QCEECGKQFAYSHSLKTHMMTH YVCNVCGNLFRQHSTLTIHMRTH -TCEFCGKNFERNGNYVEHRRTH FVCGVCNKGFNSRTYLLEHMNKH YVCHFCGKAVTNRESLKTHVRLH YSCNVCDKSFTQRSSLVVHQRTH FECQICGKSFKRSVQLKYHMEIH YKCATCQKSFKRSQELKSHGKLH HACGICGKTFPNNSSLEKHKHIH YVCDKCGRSFSQRSSLTIHQRYH YTCNVCGKTVTTKKSYTNHVKIH FKCGVCGKFYKNESSLKTHSKIH -QCEECGEIFNHKSSLNKHLLKH YACEYCDKRFGDKQYLTQHRRVH FKCDECGQCFSQRSSLNRHKRYH YECDICGICENORSTMTSHRRSH

Information?

Profile models

- Functionally important **positions**
- Homology detection (HMM)
- Unable to capture relations between columns

Global statistical models

Global statistical models

$$P(a_1, \dots, a_N) = \frac{1}{Z} \exp\left(\sum_{i,j=1}^{L} J_{ij}(a_i, a_j) + \sum_{i=1}^{L} h_i(a_i)\right) \begin{array}{l} \text{Direct Coupling} \\ \text{Analysis (DCA)} \end{array}$$

- Intra/Inter protein contacts
- Protein-protein interaction
- Prediction of **mutational effects**
- Generative model

Global statistical models : the Potts model

$$P(a_1, \dots, a_N) = \frac{1}{Z} \exp\left(\sum_{i,j=1}^{L} J_{ij}(a_i, a_j) + \sum_{i=1}^{L} h_i(a_i)\right)$$

Disentangling correlations

Global statistical models : the Potts model

$$P(a_1, \dots, a_N) = \frac{1}{Z} \exp\left(\sum_{i,j=1}^{L} J_{ij}(a_i, a_j) + \sum_{i=1}^{L} h_i(a_i)\right)$$

Disentangling correlations

Maximum entropy modeling

Model with maximal entropy ...

$$-\sum_{\{\vec{a}\}} P(\vec{a}) \log P(\vec{a}) \longrightarrow \text{Max}$$

... while reproducing **pairwise** statistics of data

 $P_{ij}(a,b) = f_{ij}(a,b)$

Global statistical models : the Potts model

$$P(a_1, \dots, a_N) = \frac{1}{Z} \exp\left(\sum_{i,j=1}^L J_{ij}(a_i, a_j) + \sum_{i=1}^L h_i(a_i)\right)$$

Disentangling correlations

Maximum entropy modeling

Model with maximal entropy ...

$$-\sum_{\{\vec{a}\}} P(\vec{a}) \log P(\vec{a}) \longrightarrow \text{Max}$$

... while reproducing **pairwise** statistics of data

$$P_{ij}(a,b) = f_{ij}(a,b)$$

Why?

Inference based on approximations

Black box modelization?

Understanding the model

Highly accurate implementation of the inference

Boltzmann Machine Learning (BM)

Learned on the **10 largest pfam families**

Analysis of the indirect effects

- Network of direct couplings?
- Biological interpretation?

Limitations of the model?

protein family			
Pfam	L	M	PDB
PF00004	132	39277	4D81
PF00005	137	68891	1L7V
PF00041	85	42721	3UP1
PF00072	112	73063	3ILH
PF00076	59	51964	2CQD
PF00096	23	38996	2LVH
PF00153	97	54582	2LCK
PF01535	31	60101	4G23
PF02518	111	80714	3G7E
PF07679	90	36141	1FHG

- Reproducing non-fitted features of the data?
- Need of higher order couplings?

Analysis of indirect effects

Mutual Information

Quantifying direct effects

Direct Information

Strength of the direct coupling

Quantifying indirect effects

→ Chain of direct couplings!

Path Information

Effective coupling for a path

We need to combine multiple paths!

Paths of length 2 are independent

$$P_2^{ij} \propto P_{ij}^{dir} \cdot \prod_{k \neq i,j} P^{path} \left([i \ k \ j] \right)$$

Length 2 Information

Effective coupling for all paths of length 2 (+ direct)

Geometrical interpretation of indirect effects Predicting proximity using different scores

Fit of the form
$$PPV = 1 - \exp(-d/d_0)$$

Limitations of the DCA model?

- How well does the DCA model capture information in the alignment?
- Does one need higher order couplings to fully describe statistical features of the data?

Compare observables which are not a direct consequence of the fitting procedure!

Three points connected correlations

Sequences in principal component space

Projection of sequences on the first two principal components of the natural alignment

Limitations of the DCA model?

Inferred DCA models capture **non-fitted statistical features** of the natural sequences

- Three points connected correlations
- Global quantities (projection on PC's, hamming distance distribution)

Pairwise couplings appear sufficient to capture variability in sequences of a protein family!

... which opens the way to protein design.

Limitations of the DCA model?

Inferred DCA models capture **non-fitted statistical features** of the natural sequences

- Three points connected correlations
- Global quantities (projection on PC's, hamming distance distribution)

Pairwise couplings appear sufficient to capture variability in sequences of a protein family!

... which opens the way to protein design.

Thank you!