Seasonal influenza viruses: Limited predictability of evolution & Inference of reassortment networks

Pierre Barrat-Charlaix

Team of Richard Neher Biozentrum, University of Basel

Human seasonal influenza virus

~ hundreds of million cases per year \longrightarrow 5-10 % of humans

In constant evolution (especially surface proteins HA & NA)

Human seasonal influenza virus **Can we understand/predict its evolution?** Which present clade will take over? HA phylogenetic tree \sim 5e-3 AA mutations / year (HA) 2-3 AA changes / year 2000 2005 2010 2015 2021

Selection in viral proteins

Selection in viral proteins

Questions

- Is this way of viewing the data correct ?
- Can we use it to predict future evolution ?

Influenza pandemic: a retrospective view

Short term prediction

Frequency trajectories of amino acid mutations

Short term prediction

Influenza h3n2, HA protein

Mutations:

- Absent in the past
- Seen around f0=30%

Fixation probability

Fixation probability

Is this expected? Clonal interference

Genetic linkage: toy model

Simple fitness lanscape
$$f(\vec{s}) = \sum_{i=1}^{L} h_i s_i$$

Change the fitness landscape periodically

Slow rate of change **Clean sweeps**

High rate of change **Clonal interference**

Genetic linkage: toy model

Sweep time ~400 generations

(vs ~3 years for flu)

It's hard to mimic neutrality!

Fixation probability

Predictors of fixation?

Predictors of fixation?

Epitope positions

- Targeted by human immune system
- Expected to be under strong selection
- Used in models of selection in influenza

But often ascertained post-hoc

Shih et. al. 2007 **Koel et. al.** 2013 **Luksza & Lässig** 2014

Predictors of fixation?

Epitope positions

- Targeted by human immune system
- Expected to be under strong selection
- Used in models of selection in influenza

But often ascertained post-hoc

Shih et. al. 2007 **Koel et. al.** 2013 **Luksza & Lässig** 2014

Fixation probability: for specific mutations?

Current models do not predict fixation!

Summary

A/H3N2 influenza is under adaptive selection, but ...

- Predictibility of frequency trajectories is low
- Fixation probability is equal to present frequency
- → « Apparent neutrality »
- Hard to find predictors of fixation / fitness
 - → LBI
 - → epitopes

Influenza does not behave like models suggest !

Open question: what could explain these results?

Open question: what could explain these results?

- Adaptive mutations only allow escape to a fraction of the population
- Fitness advantage expires before fixation

Can this result in

apparent neutrality?

Epidemiological considerations

Influenza is a seasonal virus

→ In temperate regions : exponential increase (winter) followed by bottleneck

Geographical structure

Frequency of variants varies in different regions

What does this mean for frequency trajectories ?

To be investigated...

Epidemiological considerations

For A/H3N2 - HA

Seasonal influenza viruses: Limited predictability of evolution & Inference of reassortment networks

> Pierre Barrat-Charlaix Biozentrum, University of Basel

Evolution of influenza: Mutations and reassortment

Evolution of influenza: Mutations and reassortment

Reassortment in influenza

- Combines strains from different subtypes, or from human/animal hosts.
- Origin of many pandemics
 - Asian flu 1957
 - Hong Kong flu 1968
 - H1N1 pandemic 2009
- Also happens at "smaller" scale: within a subtype.
- How often does it happen?
- Contribution to immune escape and adaptation?

Reassortment

Reassortments are hard to infer from sequences!

Why is the genealogy not tree-like?

Ancestral Reassortment Graph

Example of flu trees

Why is the genealogy not tree-like?

Inferring reassortments / Reconstructing the ARG

Existing methods

- Manual inspection of trees (e.g. [Holmes et. al. 2005], [Boni et. al. 2010])
- Methods based on genetic distance [Rabadan et. al. 2008]
- Trees + mutation methods [Villa & Lässig 2017]
- Tree topology based methods [Nagarajan & Kingsford 2011]
- Maximum likelihood methods [Müller et. al. 2020]
- No "reference" method

We want something that is

- Fast : can be easily applied to new sequences
- Finds all reassortments, and not only large obvious ones
- Works for the 2-genes case (simplicity)

Finds a subset of reassortment events

Accurate but slow

Inferring the ARG: the Treeknit method

We want something that is

- Fast : can be easily applied to new sequences
- Finds all reassortments, and not only large obvious ones
- Works for the 2-genes case (simplicity)

Main idea :

- The ARG is a collage of gene trees
- We can infer each tree from sequences (iqtree, RaxML, ...)
- Topological differences between these trees are due to reassortment
 - Method based on topological differences between trees

Tree of segment 1

Inferring the ARG

Maximally compatible clades (MCCs)

Maximally compatible clades (MCCs)

Maximally compatible clades (MCCs)

Inferring the ARG — Inferring MCCs

First step: naive estimation of MCCs

Take clades that have exactly matching topologies

Inferring the ARG — Inferring MCCs

First step: naive estimation of MCCs

Take clades that have exactly matching topologies

Inferring the ARG — Inferring MCCs

First step: naive estimation of MCCs

Take clades that have exactly matching topologies

Naive estimation :

Finds too many MCCs — Too many reassortments

Conservative approach — Does not overextend MCCs

Inferring MCCs

Inferring MCCs: Parsimonious approach

First step: "reduce" to naive MCCs

(B1, B2) → B
(C1, C2) → C
(D1, D2) → D

By eye: D is the reassorted clade. How can we **formalize** this?

Surrounding of each leaf: clade defined by parent:

• A
$$\longrightarrow$$
 (A,B) / (A,D)
• B \longrightarrow (A,B) / (A,D,B)
• C \longrightarrow (C,D,E) / (C,E)
• C \longrightarrow (C,D,E) / (C,E)

Inferring MCCs: Parsimonious approach

Inferring MCCs

 $ightarrow ec{\sigma} = (\sigma_1 \dots \sigma_L)$: "configuration" vector

(Simulated annealing)

Minimize incompatibilities with a minimal number of reassortments

Inferring MCCs: summary

Stop if only one naive MCC is found: trees match perfectly

$$N_{\gamma}(\vec{\sigma}) = \sum_{n \in leaves} \Delta(n, \vec{\sigma}) \sigma_n + \gamma (L - |\vec{\sigma}|)$$

• $\gamma \to \infty$ Infinite cost for removing leaves — Naive approach

$$N_{\gamma}(\vec{\sigma}) = \sum_{n \in leaves} \Delta(n, \vec{\sigma}) \sigma_n + \gamma (L - |\vec{\sigma}|)$$

• $\gamma \to \infty$ Infinite cost for removing leaves — Naive approach

•
$$\gamma = 1$$
 $N(\vec{\sigma}) = \#$ incompatibilities + $\#$ removed leaves
Reassortments w. naive approach Enforced reassortments
 $N(\vec{\sigma}) = \text{Total number of reassortments} \longrightarrow "Parsimonious" approach$

Intermediate $\gamma \longrightarrow$ Interpolate between naive and "parsimonious"

Evaluating the method: Simulated data

Simulate an ARG: coalescent process with reassortment rate $\rho \longrightarrow Apply$ the method

How can we evaluate the inference of MCCs?

- Inferred: (A,B), (C), (D,E)
- Real MCCs: (A,B,C), (D,E)
 Defines a partition of strains

Using the Variation of Information (VI): distance between partitions of a set [Meilă 2007]

Choosing gamma

2

Comparison w. other methods

CoalRe: ML based [Müller et. al. 2020]

GiRaF: topology based [Nagarajan & Kingsford 2011]

		CoalRe	GiRaF	Treeknit	
Runtime	Inferring trees		20min	30s	for
	Inferring the ARG	~hours	40s	40ms	

for 100 leaves

Application: better resolved trees

Application: disentangling tanglegrams

Without the knowledge of reassortments: hard problem

Application: disentangling tanglegrams

With the knowledge of reassortments: easy

Available at github.com/PierreBarrat/TreeKnit

Results

- **Treeknit:** Heuristic to infer ARGs from two trees
- Depends on one parameter, interpolating between naive and parsimonious inference
- Very **fast** runtime
- Good performance on simulated data for all reassortment rates

Applications

- Resolve trees
- Visualisation: disentangle tanglegrams

Thank you for listening!