Statistical models of protein sequences

Generative models & evolution-guided protein design

Pierre Barrat-Charlaix

Biozentrum, Univeristy of Basel

Statistical modeling of protein sequences

Protein family

Evolutionary constraints

Multiple Sequence Alignment

YHCDKCSMSFAAPSRLNKHMRTH **HKC**SYCSKAFIKKTLLKAHERTH -OCEECGKOFAYSHSLKTHMMTH **YVC**NVCGNLFRQHSTLTIHMRTH -TCEFCGKNFERNGNYVEHRRTH FVCGVCNKGFNSRTYLLEHMNKH YVCHFCGKAVTNRESLKTHVRLH **YSCNVCDKSFTQRSSLVVHQRTH** FECOICGKSFKRSVOLKYHMEIH YKCATCOKSFKRSOELKSHGKLH HACGICGKTEPNNSSLEKHKHIH **YVC**DKCGRSFSORSSLTIHORYH YTCNVCGKTVTTKKSYTNHVKTH FKCGVCGKFYKNESSLKTHSKIH -OCEECGEIFNHKSSLNKHLLKH YACEYCDKRFGDKOYLTOHRRVH FKCDECGQCFSQRSSLNRHKRYH YECDICGICFNORSTMTSHRRSH

Information?

Sequence functionality landscape

Sequence functionality landscape

How can we model this ?

Profile models

- Functionally important positions
- Homology detection (HMM)
- Unable to capture relations between columns

Global statistical model

Maximum entropy formalism

$$P(a_1,\ldots,a_N) = \frac{1}{Z} \exp\left(\sum_{i,j=1}^L J_{ij}(a_i,a_j) + \sum_{i=1}^L h_i(a_i)\right)$$

Maximum entropy modeling

Find distribution $P(a_1 \dots a_N)$

• With maximal entropy ...

$$-\sum_{\{\vec{a}\}} P(\vec{a}) \log P(\vec{a}) \longrightarrow \text{Max}$$

 While reproducing pairwise statistics of data

$$P_i(a) = f_i(a)$$
$$P_{ij}(a,b) = f_{ij}(a,b)$$

 \rightarrow Only information used is $f_{ij}(a, b)$ and $f_i(a)$

DCA: Successful model

• Predicting 3D structure

Morcos *et al.,* PNAS, 2011 Ovchinnikov *et al.,* Science, 2017

• Predicting effect of mutations

Figliuzzi et al., MBE, 2015

Predicting protein-protein interactions

Gueudré et al., PNAS, 2016

How good are DCA models at describing functionality of a protein ?

Is the DCA model generative?

Sample from the **DCA sequence landscape**

 $P(a_1 \dots a_l) \propto \exp\left\{-E(a_1 \dots a_l)\right\}$

Is the DCA model generative?

Is the DCA model generative?

Protein design Chorismate mutase

enzyme in the synthesis pathway of phenylalanine and tyrosine

with Rama Ranganathan's group

Protein design: Chorismate mutase

Protein design: Chorismate mutase

Low energy DCA sequences are variable and functional

Protein design Chorismate mutase

enzyme in the synthesis pathway of phenylalanine and tyrosine

1130 natural homologs . . . E. coli growth 0 **DCA** sequences 0 time 0 time t experiments by Bill Russ Feedback! $P(\vec{A}) \propto e^{-\mathcal{H}(\vec{A})}$

Phenotype: $r.e. = \log \frac{f_{seq}^{t}}{f_{seq}^{0}} - \log \frac{f_{wt}^{t}}{f_{wt}^{0}}$ enrichment of designed sequence relative to wildtype (E. coli)

with Rama Ranganathan's group

Additional node

Not all natural seqs. are functional!

$$\mathcal{H}(\vec{A}, x) = \mathcal{H}^{DCA}(\vec{A}) - \sum_{i=1}^{n} \xi_i(a_i, x) \longrightarrow P(x = 1 | \vec{A})$$

Supervised learning problem: Infer parameters from natural sequences and phenotypes

Test on designed sequences !

Conclusion

- Alignments of homologous proteins contain sufficient information for generating non-natural functional sequences
- This is done by modeling homologous sequences with a **pairwise exponential model**

Direct Coupling Analysis

- Fitted on conservation and correlation in the alignment
- Reproduces non-fitted quantities
- Can be improved using experimental feedback

Acknowledgments

Collaborators

Matteo Figliuzzi

Simona Cocco

Bill Russ

Martin Weigt

Rémi Monasson

Rama Ranganathan

Acknowledgments

Current group in Unibas

Richard Neher

Emma Hodcroft

Nicholas Noll

Eric Ulrich

Thank you !