Inferring Potts models for evolutionary correlated data

Edwin Rodriguez, Pierre Barrat-Charlaix, Martin Weigt

## **Statistical modeling of protein sequences**

#### **Protein family**

# Evolutionary constraints

#### **Multiple Sequence Alignment**

YHCDKCSMSFAAPSRLNKHMRTH **HKC**SYCSKAFIKKTLLKAHERTH -OCEECGKOFAYSHSLKTHMMTH **YVC**NVCGNLFRQHSTLTIHMRTH -TCEFCGKNFERNGNYVEHRRTH FVCGVCNKGFNSRTYLLEHMNKH YVCHFCGKAVTNRESLKTHVRLH **YSCNVCDKSFTQRSSLVVHQRTH** FECOICGKSFKRSVOLKYHMEIH YKCATCOKSFKRSOELKSHGKLH HACGICGKTEPNNSSLEKHKHIH YVCDKCGRSFSORSSLTIHORYH YTCNVCGKTVTTKKSYTNHVKTH FKCGVCGKFYKNESSLKTHSKIH -OCEECGEIFNHKSSLNKHLLKH YACEYCDKRFGDKOYLTOHRRVH FKCDECGQCFSQRSSLNRHKRYH YECDICGICFNORSTMTSHRRSH

# Information?

## **Global statistical model**



Only information used is  $f_i(a)$  and  $f_{ij}(a, b)$ 

### **DCA: Successful model**

XM182T

ed statistical sco



A 20 10

Statistical score ∆ Φ -10

-20 -30 -40

-50 -60

#### Morcos et al., PNAS, 2011 Ovchinnikov et al., Science, 2017



**Predicting 3D structure** 

Figliuzzi et al., MBE, 2015



**Designing new sequences** 

Martin's talk, this morning

### **Phylogenetic biases**



### **Phylogenetic biases**



## **Phylogenetic biases**



• Biased statistics  $f_i(a)$   $f_{ij}(a,b)$ 

Phylogenetic tree ——— Changes spectre of the correlation matrix

*Power law tails in phylogenetic systems* Qin & Colwell, 2017

## **Correcting for biases**

#### **Reweighting sequences**

Sequence  $\sigma_i$ Weight  $w_i = 1/(\# seqs with > 80\% similarity to \sigma_i)$ 

**Uncontrolled method...** 

## **Correcting for biases**

#### **Reweighting sequences**

Sequence  $\sigma_i$ Weight  $w_i = 1/(\# seqs with > 80\% similarity to \sigma_i)$ 

**Uncontrolled method...** 

#### **Can we do better?**

Given the phylogenetic tree...

- Principled way to correct statistics for phylogeny
- Translating this into a DCA model
- Assessing the quality of the method on artificial/protein data

#### **Maximum likelihood**



Likelihood: i.i.d. sequences

$$\mathcal{L}(Data|J,h) = \prod_{m} P(\sigma_{m}|J,h)$$

n

#### **Maximum likelihood**



Likelihood

$$\mathcal{L}(Data|J,h) \neq \prod_{n} P(\sigma_{n}|J,h)$$

## **Correcting the likelihood**

**Evolutionary model** (*i.e.* propagator)  $\longrightarrow P(B|A, \Delta t)$ 

Felsenstein's pruning algorithm



 $\mathcal{L}^{n}(A) = \prod_{B \in \mathcal{C}(A)} \sum_{\{B\}} P(B|A, \Delta t) \mathcal{L}^{m}(B)$ 

 $P(B|A,\Delta t)$  ?

#### **Based on the Potts model?**

$$P(a_1, \dots, a_N) = \frac{1}{Z} \exp \left( \sum_{i,j=1}^{L} J_{ij}(a_i, a_j) + \sum_{i=1}^{L} h_i(a_i) \right)$$
$$\downarrow$$
$$P(B|A, \Delta t, J, h)$$

$$P(B|A,\Delta t)$$
 ?

#### **Based on the Potts model?**

 $P(B|A, \Delta t, J, h)$ 

→ Two major problems

- Sum over all configurations of internal nodes **Intractable**

$$\mathcal{L}^{n}(A) = \prod_{B \in \mathcal{C}(A)} \sum_{\{B\}} P(B|A, \Delta t) \mathcal{L}^{m}(B)$$

Need of an approximation

Independent sites approximation:

"Real" frequency  $\,\omega_i(A_i)\,$ Mutation rate  $\mu$ 

Position *i* of the alignment

$$P(B_i|A_i, \Delta t) = e^{-\mu\Delta t}\delta_{A_i, B_i} + (1 - e^{-\mu\Delta t})\omega_i(B_i)$$

No mutation

>1 mutation

**Independent sites approximation:** 

"Real" frequency  $\,\omega_i(A_i)\,$ Mutation rate  $\mu$ 

#### Position *i* of the alignment

$$P(B_i|A_i, \Delta t) = e^{-\mu\Delta t} \delta_{A_i, B_i} + (1 - e^{-\mu\Delta t}) \omega_i(B_i)$$

No mutation

>1 mutation

Likelihood

$$\mathcal{L}_{i}^{n}(A_{i}|\omega_{i}) = \prod_{B \in \mathcal{C}(A)} \sum_{\{B_{i}\}} P(B_{i}|A_{i}, \Delta t) \mathcal{L}_{i}^{m}(B_{i}|\omega_{i})$$

Cannot account for correlations!

Independent pairs approximation: "Real" frequency  $\omega_{ij}(A_i, A_j)$ 

Pairs (*i*,*j*) evolve independently of each other

No mutation

$$P(B_i, B_j | A_i, A_j, \Delta t) = e^{-2\mu\Delta t} \delta_{A_i, B_i} \delta_{A_j, B_j}$$
  
+  $e^{-\mu\Delta t} (1 - e^{-\mu\Delta t}) \left( \omega_{ij} (B_i | A_i) \delta_{A_j, B_j} + \omega_{ij} (B_j | A_j) \delta_{A_i, B_i} \right)$   
+  $(1 - e^{-\mu\Delta t})^2 \omega_{ij} (B_i, B_j)$  One mutation

>2 mutations

With constraints  $\forall j, \sum_{b} \omega_{ij}(a, b) = \omega_i(a)$ and  $\forall i, \sum_{a} \omega_{ij}(a, b) = \omega_j(b)$ 

Independent sites approximation: "Real" frequency  $\omega_i(A_i)$  $P(B_i|A_i, \Delta t) = e^{-\mu\Delta t} \delta_{A_i, B_i} + (1 - e^{-\mu\Delta t}) \omega_i(B_i)$ No mutation >1 mutation

Independent pairs approximation: "Real" frequency  $\omega_{ij}(A_i, A_j)$ 

No mutation

$$P(B_i, B_j | A_i, A_j, \Delta t) = e^{-2\mu\Delta t} \delta_{A_i, B_i} \delta_{A_j, B_j} + e^{-\mu\Delta t} (1 - e^{-\mu\Delta t}) \left( \omega_{ij} (B_i | A_i) \delta_{A_j, B_j} + \omega_{ij} (B_j | A_j) \delta_{A_i, B_i} \right) + (1 - e^{-\mu\Delta t})^2 \omega_{ij} (B_i, B_j)$$
One mutation

>2 mutations

# **Correcting for phylogenetic effects**

• Principled way to correct statistics for phylogeny



- Translating this into a DCA/Potts model
- Assessing the quality of the method on artificial data

## Testing the method: artificial data

**Potts model** 

$$P^{0}(\sigma) \propto e^{-\mathcal{H}^{0}(\sigma)} \qquad \begin{array}{c} \text{Sparse couplings} \\ \mathcal{H}^{0}(\sigma) = -\sum_{i < j} J^{0}_{ij}(\sigma_{i}, \sigma_{j}) - \sum_{i=1}^{L} h^{0}_{i}(\sigma_{i}) \end{array}$$

Tree

Propagator

# **Testing the method: artificial data**

 $P^0(\sigma) \propto e^{-\mathcal{H}^0(\sigma)}$  $\mathcal{H}^{0}(\sigma) = -\sum_{i < j} J^{0}_{ij}(\sigma_i, \sigma_j) - \sum_{i=1}^{L} h^{0}_i(\sigma_i)$  $\sigma^R$ Tree  $\Delta t$ **12 levels**  $\Delta t$ 11  $\mathbf{\Sigma}$ 

Potts model

#### **Propagator**

• # Mutations per branch

**Sparse couplings** 

 $\mu L \Delta t = 3$ 

 New state after mutation  $P^0(\sigma_i | \sigma_{\setminus i})$ 

#### ~Gibbs sampling

• 30 repetitions, different

### **Phylogenetic inference corrects statistics**

Single site frequencies  $\omega_i$  : inferred vs true



### **Phylogenetic inference corrects statistics**

Single site frequencies  $\omega_i$  : inferred vs true



### **Phylogenetic inference corrects statistics**

Connected correlations  $\omega_{ij} - \omega_i \omega_j$  : inferred vs true



### **Improved DCA parameters**



## **Improved DCA parameters**





#### **Prediction of mutational effects**

#### Single mutations from "wild-type" sequence

$$\sigma^{1} \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \models E^{1}$$
$$\sigma^{2} \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \models E^{2}$$

 $\sigma^{\mathsf{K}} \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \mathsf{E}^{\mathsf{K}}$ 

#### **Quality of prediction**

 $\blacktriangleright$  cor( $E^i, \mathcal{H}^{inf}(\sigma^i)$ )

## **Prediction of mutational effects**



#### Single mutations from "wild-type" sequence



#### $\sigma^{\mathsf{K}} \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \mathsf{E}^{\mathsf{K}}$

Quality of prediction

 $cor(E^i, \mathcal{H}^{inf}(\sigma^i))$ 

#### What about protein families?

### **Contact prediction in protein families**

#### PF00046



#### Contact prediction in protein families PF00084



## Thank you!

# Fitting mu



# **Alignment from frequencies**



Scrambling the alignment to reproduce **conservation** and **correlation** 

Swap

$$\chi^2 = ||C - C^{target}||$$
$$P(\vec{a}) \propto e^{-\beta\chi^2} \text{ and } \beta \to 0$$

Bialek & Ranganathan, arXiv, 2007