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Abstract

Global coevolutionary models of homologous protein families, as constructed by direct coupling analysis (DCA), have
recently gained popularity in particular due to their capacity to accurately predict residue–residue contacts from
sequence information alone, and thereby to facilitate tertiary and quaternary protein structure prediction. More re-
cently, they have also been used to predict fitness effects of amino-acid substitutions in proteins, and to predict evo-
lutionary conserved protein–protein interactions. These models are based on two currently unjustified hypotheses: 1)
correlations in the amino-acid usage of different positions are resulting collectively from networks of direct couplings;
and 2) pairwise couplings are sufficient to capture the amino-acid variability. Here, we propose a highly precise inference
scheme based on Boltzmann-machine learning, which allows us to systematically address these hypotheses. We show how
correlations are built up in a highly collective way by a large number of coupling paths, which are based on the proteins
three-dimensional structure. We further find that pairwise coevolutionary models capture the collective residue vari-
ability across homologous proteins even for quantities which are not imposed by the inference procedure, like three-
residue correlations, the clustered structure of protein families in sequence space or the sequence distances between
homologs. These findings strongly suggest that pairwise coevolutionary models are actually sufficient to accurately
capture the residue variability in homologous protein families.
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Introduction
In the course of evolution, proteins may substitute the vast
majority of their amino acids without losing their three-
dimensional structure and their biological functionality.
Rapidly growing sequence databases provide us with ample
examples of such evolutionary related, that is, homologous
proteins, frequently already classified into protein families and
aligned into large multiple-sequence alignments (MSA).
Typical pairwise sequence identities between homologous
proteins go down to 20–30%, or even below (Finn et al.
2014). Such low sequence identities are astonishing since
even very few random mutations may destabilize a protein
or disrupt its functionality.

Assigning a newly sequenced gene or protein to one of
these families helps us to infer functional annotations.
Structural homology modeling, for example, belongs to
the most powerful tools for protein-structure prediction
(Arnold et al. 2006; Webb and Sali 2014). However, beyond
the transfer of information, the variability of sequences
across homologs itself contains information about evolu-
tionary pressures acting in them, and statistical sequence
models may unveil that information (Durbin et al. 1998; de
Juan et al. 2013).

A first level of information is contained in the variability of
individual residues: low variability, that is, conservation, fre-
quently identifies functionally or structurally important sites
in a protein. This information is used by so-called profile

models (Durbin et al. 1998), which reproduce independently
the amino-acid statistics in individual MSA columns. They
belong to the most successful tools in bioinformatics; they
are at the basis of most techniques for multiple-sequence
alignment and homology detection, partially as profile
Hidden-Markov models accounting also for amino-acid inser-
tions and deletions (Eddy 1998).

A second level of information is contained in the co-
variation between pairs of residues, measurable via the
correlated amino-acid usage in pairs of MSA columns (de
Juan et al. 2013; Cocco et al. 2017). Covariation cannot be
captured by profile models, as they treat residues inde-
pendently. To overcome this limitation, global statistical
models with pairwise couplings—exploiting residue con-
servation and covariation—have recently become popu-
lar. Methods like the direct coupling analysis (DCA)
(Weigt et al. 2009; Morcos et al. 2011), PsiCov (Jones
et al. 2012), or Gremlin (Balakrishnan et al. 2011) allow
for the prediction of residue–residue contacts using se-
quence information alone, and can be used to predict
three-dimensional protein structures (Marks et al. 2012;
Ovchinnikov et al. 2017) and to assemble protein com-
plexes (Schug et al. 2009; Hopf et al. 2014; Ovchinnikov
et al. 2014). Currently, these methods are the central el-
ement of various of the best-performing residue-contact
predictors in the CASP competition for protein structure
prediction (Jones et al. 2015; Wang et al. 2017).
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Despite their success in practical applications, not much is
known about the reasons for this success and their intrinsic
limitations. Typically, two hypotheses are made: 1) The cor-
related amino-acid usage in two MSA columns may result
from a direct residue–residue contact in the protein struc-
ture, causing coordinated amino-acid changes to maintain
the protein’s stability. It may also result indirectly via inter-
mediate residues, making the direct use of covariation for
contact prediction impractical. The success of global models
is attributed to their capacity to extract direct couplings from
indirect correlations. 2) Using the maximum-entropy princi-
ple, the simplest models reproducing pairwise residue covari-
ation depend on statistical couplings between residue pairs.
Whether or not this model is sufficient to capture also higher-
order covariation remains currently unclear.

So far, these two points have not been investigated sys-
tematically. The reason is relatively simple: The inference of
pairwise models exactly reproducing the empirical conserva-
tion and covariation statistics extracted from an MSA
requires to sum over all 20 L sequences of aligned length L,
an unfeasible task for sequences of typical sizes L¼ 50–500.
Approximation schemes like mean-field approximation
(Morcos et al. 2011), Gaussian approximation (Jones et al.
2012), or pseudo-likelihood maximization (Balakrishnan
et al. 2011; Ekeberg et al. 2013) have been introduced; they
perform very well in contact prediction. Their approximate
character prohibits, however, the analysis of higher-order cor-
relations and collective effects, since even the pairwise statis-
tics are not well reproduced. More precise approaches have
been proposed recently (Sutto et al. 2015; Barton et al. 2016;
Haldane et al. 2016), but their high computational cost has
limited applications mostly to anecdotal cases so far.

Understanding these basic questions is essential for under-
standing the success of global coevolutionary models beyond
“black box” applications, but also for recognizing their current
limitations and thus potentially to open a way towards im-
proved statistical modeling schemes. To this end, we imple-
ment a highly precise approach for parameter inference in
pairwise statistical models. Applying this approach to a num-
ber of very large protein families (containing sufficient
sequences to reliably measure higher-order statistical fea-
tures), we demonstrate that indirectly generated pair corre-
lations are highly collective effects of entire networks of direct
couplings, which are based on the structural vicinity between
residues.

However, the most interesting finding of the article is the
unexpected accuracy of DCA at reproducing higher-order
statistical features, which are not fitted by our approach.
These nonfitted features include connected three-point cor-
relations, the distance distributions between natural sequen-
ces and between artificial sequences sampled from the model,
or the clustered organization of sequences in sequence space.
Currently we do not find indications, that more involved
models (e.g., including three-residue interactions) are needed
to reproduce the full sequence statistics: pairwise models are
not only necessary as argued above, but seem to be sufficient
to describe the sequence variability between homologous
proteins.

Results

Direct Coupling Analysis—Methodology and
Approximate Solutions
The aim of global coevolutionary sequence models as con-
structed by DCA is to provide a protein family-specific prob-
ability distribution

Pð
�
AÞ / exp

X
j>i

JijðAi;AjÞ þ
XN

i¼1

hiðAiÞ
 !

(1)

for all full-length amino-acid sequences
�
A ¼ ðA1; . . . ;ALÞ.

To model sequence variability in an MSA, couplings JijðA; BÞ
and biases (fields) hiðAÞ have to be fitted such that model
Pð

�
AÞ reproduces the empirically observed frequencies fiðAÞ

of occurrence of amino acid A in the ith MSA column, and
cooccurrence fijðA; BÞ of amino acids A and B in positions i
and j of the same sequence. In other words, the DCA model
has to satisfy

PiðAÞ ¼ fiðAÞ and PijðA; BÞ ¼ fijðA; BÞ (2)

for all columns i, j and all amino acids A, B, with Pi and Pij

being marginal distributions of model Pð
�
AÞ, cf. supplemen-

tary methods and section 1, Supplementary Material online.
Equation (2) has two important consequences. First, a

precisely inferred DCA model reproduces also pairwise con-
nected correlations (or covariances) cijðA; BÞ ¼ fijðA; BÞ� fi
ðAÞfjðBÞ found in the MSA. This is a crucial difference with
profile models, which show vanishing connected correlations
by construction. Second, the inference of Pð

�
AÞ via equation (2)

does not use all the information contained in the MSA, but
only the pairwise statistics. For this reason, model Pð

�
AÞ has a

priori no reason to reproduce any higher-order statistics con-
tained in the alignment. In particular, even though a model of
the form of equation (1) will contain higher-order correlations,
such as three-residue correlations, these may differ significantly
from those found in the original MSA.

To infer DCA parameters, we need to estimate marginal
probabilities for single positions and position pairs from
model Pð

�
AÞ. Exact calculations of these marginals require

to perform exponential sums over qL terms, with L being
the sequence length, and q¼ 21 enumerating amino acids
and the alignment gap. These sums are infeasible even for
short protein sequences, and have been replaced by approx-
imate expressions, for example, via mean-field (Morcos et al.
2011), Gaussian (Jones et al. 2012), or pseudo-likelihood
approximations (Balakrishnan et al. 2011; Ekeberg et al.
2013). These approximations are sufficiently accurate for
residue-contact prediction, which is topological in nature:
only the existence of a strong direct statistical coupling has
to be detected, not necessarily its precise numerical value. As
a consequence, these methods do not reproduce the empir-
ical frequencies and thus do not satisfy equation (2), cf.
figure 1 for pseudo-likelihood maximization (plmDCA
[Ekeberg et al. 2013]). More precise methods based on an
adaptive cluster expansion (Barton et al. 2016) or Boltzmann
machine learning using Markov-chain Monte Carlo sampling
(Ackley et al. 1985) for estimating marginal distributions have
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been proposed recently (Sutto et al. 2015; Haldane et al.
2016). While decreasing deviations from equation (2) sub-
stantially (i.e., fitting quality), they are typically much more
computationally expensive and not suitable for large-scale
application to hundreds or thousands of protein families.

Accurate Fitting Is Needed to Reproduce the Empirical
Residue Covariation in Homologous Protein Families
Since the aim of the current article is to unveil the way DCA
disentangles direct couplings and indirect correlations, and to
investigate if it captures higher-order statistical observables
estimated from the MSA, we have implemented an efficient
version of Boltzmann machine (BM) learning described in
“Materials and Methods” and, in full detail, in supplementary
section 2, Supplementary Material online. In short, BM learn-
ing estimates the pairwise marginal distributions of Pð

�
AÞ by

Monte-Carlo sampling, and iteratively updates model param-
eters until equation (2) is satisfied. In contrast to approx-
imations such as applied in plmDCA, the inference of
parameters using BM learning can be made arbitrarily
accurate, provided that Monte-Carlo samples are large
enough and sufficient iterations are performed. In anal-
ogy to earlier notation, we will use bmDCA for the

resulting implementation of DCA. As is shown in figure 1
and in table 1, bmDCA reaches very accurate fitting,
approaching the statistical uncertainties related to the
finite sample size (i.e., the sequence number in each
MSA), even for the very large protein families studied
here. Obviously bmDCA has a higher computational cost
than plmDCA: While plmDCA achieves inference typi-
cally in few minutes, bmDCA needs few hours to several
days for one family, in dependence of the sequence
length and the required fitting accuracy.

Interestingly, the increased fitting accuracy does not im-
prove the contact prediction beyond the one of plmDCA, the
currently best unsupervised DCA contact predictor, cf.
figure 1C and D. Couplings JijðA; BÞ are highly correlated be-
tween PLM and BM (Pearson correlations of 90–98% across all
studied protein families), in particular large couplings are ro-
bust and lead to very similar contact predictions. However, the
model statistics depends collectively on all Oðq2L2Þ parame-
ters and can thus differ substantially even for small differences
in the individual parameters. This sensitivity (so-called critical-
ity) has also been observed in other models inferred from
large-scale biological data, cf. (Mora and Bialek 2011).

FIG. 1. Fitting accuracy and contact prediction for DCA models inferred using pseudo-likelihood maximization (plmDCA) and Boltzmann-
machine learning (bmDCA): While the Potts model inferred by plmDCA (A) fails to reproduce the one- and two-residue frequencies (main
panel) and the connected two-point correlations (lower left insert) in the PF00072 protein family, the model inferred using our bmDCA algorithm
(B) is very accurate. Slight deviations visible for very small frequencies in log-scale (upper right insert) are results of the ‘2-regularization penalizing
strongly negative couplings. Despite these differences, the contact predictions (C for plmDCA and D for bmDCA) relying on the strongest 2 L¼ 224
DCA couplings (with ji � jj> 4) are close to identical: native contacts (all-atom distance below 8 Å) are shown above the diagonal, predicted
contacts (below the diagonal). Very similar results are observed across all studied protein families, cf. supplementary sections 5.1 and 5.5,
Supplementary Material online (color online).
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Indirect Correlations Result Collectively from
Networks of Direct Couplings
bmDCA provides a highly accurate approach to describe the
sequence variability of homologous proteins via a pairwise
coevolutionary model. This implementation allows us to
ask fundamental questions about how DCA works, its capac-
ities and its possible limitations, without being biased by the
specificities of approximate DCA implementations.

The success of global models as inferred by DCA is typically
attributed to the idea that they disentangle statistical corre-
lations, which are empirically observed in an MSA and mea-
sured via the mutual information (MI), into a network of
direct couplings between residues. The strongest direct cou-
plings are biologically interpretable as residue–residue con-
tacts in the three-dimensional protein structure. However,
this idea, even if stated in many papers on the subject, has
never been examined in detail, and important questions re-
main unanswered: can indirect effects be explained by a few
strong coupling chains, or are they distributed over networks
of numerous small couplings? Are these networks structurally
interpretable, that is, in relation to a proteins contact map?

Correlations Are Mediated Collectively by Distributed
Networks of Coevolutionary Couplings
To answer the first question, we need to quantify the corre-
lation induced by a coupling chain of arbitrary length, con-
necting any two residues. To this aim, we take inspiration
from the concept of direct information (DI) introduced in
(Weigt et al. 2009). DI is a proxy of the strength of the direct
interaction Jij between two residue positions i and j; it meas-
ures the correlation that i and j would have if they were only
connected by Jij, cf. figure 2A. To measure the indirect corre-
lation between i and j induced via a chain of intermediate
residues, we introduce the concept of path information (PI),
as illustrated again in figure 2A and defined in “Materials and
Methods”. Now, for each protein family, we extracted the 100
most correlated residue pairs (highest MI). Using a

modification of Dijkstra’s shortest-path algorithm (Dijkstra
1959)—which becomes approximate due to the nonadditiv-
ity of PI but delivers highly reliable results as shown in sup-
plementary section 3, Supplementary Material online—we
extracted for each residues pairs the 15 strongest coupling
paths (highest PI) connecting the two residues.

In figure 2B, we show that the decrease of the average
strength of the kth strongest path is compatible with a slowly
decreasing power law, hPIðkÞi / k�� , with exponents � be-
tween 1.1 and 2.3. While this fit is only approximate, as visible
by the strong deviations for the strongest path at k¼ 1, its
slow decay clearly shows that the correlation between two
residues typically is not mediated by one or few coupling
chains. On the contrary, indirect effects emerge collectively,
in the sense that a large number of partially overlapping
coupling chains have to be taken into account, each one
contributing only a small fraction to the total correlation. It
is important to note that the strongest path (rank k¼ 1) is on
average much stronger than the others and clearly does not
fall onto a power law. For the overwhelming majority of the
pairs, this strongest path is the direct one containing only one
coupling. Its contribution to the total correlation is, on aver-
age, about 12.5% of the total MI. This average is dominated by
the shortest protein families, PF00096 and PF01535, who are
expected to show less collectivity due to their small number L
of aligned residues.

On the Structural Basis of Coevolutionary
Coupling Networks
As a consequence of the last section, we need to consider the
collective effect of multiple paths rather than trying to bio-
logically interpret individual paths beyond the direct one.
While this is technically very hard in general, the collective
effect of all paths of length two is efficiently computable, cf.
“Materials and Methods.” The corresponding correlation
measure, named here length-two information (L2I) and illus-
trated in figure 2A, adds the L � 2 possible indirect paths of

Table 1. Results for the Ten Selected Protein Families.

Protein Family Fitting Quality Contact Prediction Three-Point Correlations Collectivity of Correlations

Pfam L M PDB PLM BM PLM BM PLM BM corr(DI, MI) corr(L2I, MI) �

PF00004 132 39277 4D81 0.630 0.954 0.672 0.672 0.333 0.980 0.33 0.42 1.2
PF00005 137 68891 1L7V 0.546 0.948 0.599 0.586 0.718 0.978 0.51 0.65 1.4
PF00041 85 42721 3UP1 0.897 0.973 0.715 0.671 0.893 0.991 0.61 0.77 1.7
PF00072 112 73063 3ILH 0.670 0.978 0.836 0.842 0.803 0.988 0.52 0.69 1.4
PF00076 69 51964 2CQD 0.868 0.977 0.877 0.833 0.963 0.993 0.53 0.72 1.5
PF00096 23 38996 2LVH 0.954 0.987 0.657 0.711 ND ND 0.95 0.99 2.3
PF00153 97 54582 2LCK 0.800 0.967 0.601 0.563 0.517 0.986 0.45 0.57 1.1
PF01535 31 60101 4G23 0.902 0.994 0.630 0.739 0.120 0.996 0.70 0.91 1.5
PF02518 111 80714 3G7E 0.624 0.970 0.423 0.396 �0.228 0.986 0.47 0.60 1.6
PF07679 90 36141 1FHG 0.823 0.955 0.826 0.826 0.797 0.993 0.48 0.58 1.8

NOTE.—The first four columns give the ID of the selected protein families together with the sequence length L, alignment depth M and a representative protein structure. The
fitting quality measures the Pearson correlation between connected two-point correlations in the natural data, and in a sample drawn from the Potts models inferred by
plmDCA and bmDCA (better quality emphasized in boldface). The contact prediction gives the fraction of true positives (all-atom distance< 8 Å) within the first 2 L
predictions. Columns 9 and 10 provide the Pearson correlation between connected three-point correlations observed in natural and in sampled sequences (due to the
dominance of insignificantly small terms, only those with cMSA

ijk ðA; B; CÞ > 0:01 are considered). PF00096, with only 23 aligned positions is the shortest considered protein
family, has no significant three-point correlations, neither in the data nor in the Potts model. The last three columns quantify the collective nature of correlations: the Pearson
correlation of direct information/mutual information as compared to the length-two information/mutual information, and the exponent of the approximate power-law decay
of the strongest paths (in terms of their path information) with their ranking.

Pairwise Coevolutionary Models of Proteins . doi:10.1093/molbev/msy007 MBE

1021

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/35/4/1018/4815777 by  barratcharlaix.pierre@
gm

ail.com
 on 06 January 2021

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy007#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy007#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy007#supplementary-data


length 2 (one intermediate residue) to the direct path be-
tween two residue positions. As expected, L2I captures a
much higher fraction of the full mutual information than
DI, cf. table 1. However, a large fraction of the mutual infor-
mation is not yet covered. It is contributed by longer coupling
chains: L2I depends only on 2 L � 3 out of the LðL� 1Þ=2
couplings between residue pairs. Consistent with this obser-
vation, the correlation of L2I with MI is much larger in small
proteins, and decreases when going to larger proteins.

L2I allows for an interesting structural interpretation. It is
well established that large DI are good predictors for native
residue contacts. Is large L2I a good predictor of second
neighbors in the protein structure, that is, of residue pairs
which are two contacts away? To investigate this question,
the blue line in figure 2C displays the fraction of true positive
predictions (positive predictive value, averaged over the pro-
tein ensemble) within the highest 25 DI as a function of a
distance cutoff d, which varies between 1 and 25 Å. It starts at
0 for small d, and approaches 1 exponentially with a scaling
1� exp ð�d=d0Þ of characteristic length d0¼ 3.6 Å. At 8 Å
distance (typically used as contact definition in DCA studies),

an accurate prediction of about 85% true positives (TP) and
only 15% false positives (FP) is reached. Measuring the cut-off
dependent positive predictive value for the length-two infor-
mation L2I, we find again an exponential behavior but with
characteristic length d0¼ 4.4 Å. The fraction of TP therefore
reaches 85% only between 11 and 12 Å, a distance compatible
with second structural neighbors. The finding that the top DI
are dominated by direct contacts, and large L2I by residue
pairs which are up to second neighbors in the structure, fur-
ther underlines the structural basis of coevolutionary con-
straints as captured by DCA. We also note that the full
correlation MI—depending on coupling chains of all possible
lengths—does not imply an exponential behavior in figure 2,
and no characteristic length scale can be identified.

Pairwise Coevolutionary Models Accurately
Reproduce the Residue Variability beyond the Fitted
Two-Residue Statistics
Profile models assuming independent residues are not able to
extract the full information contained in the MSA of a protein
family. In particular, the inclusion of pairwise coevolutionary

FIG. 2. Collective nature of the correlation between two residue positions: (A) Illustration of the correlation measures used in this study. While the
mutual information MI depends collectively on the entire network of coevolutionary couplings, the direct information DI is obtained by taking
into account only the single direct coupling between the sites of interest (e.g., 1 and 3 in the figure). All other couplings are formally set to zero. The
path information PI is the direct generalization of DI to the correlation mediated by a single path (e.g., [1, 2, 4, 3] in the figure). The length-two
information L2I measures the collective effect of the direct coupling and all length-two paths (e.g., [1, k, 3] with k¼ 2, 4, 5). (B) A log–log plot of the
average ratio of path information to mutual information (triangular symbols and black fat line: average over all families) as a function of the rank of
the corresponding path, showing a very slow (approximately power-law) decay. This illustrates the fact that indirect correlations do not depend on
a single (or very few) coupling chains, but are distributed over coupling networks. (C) For the 25 highest ranking residue pairs according to DI, L2I,
and MI, the fraction of pairs of distance below d, as a function of d. The scale on the y-axis is logarithmic, and chosen in a way that functions of the
form 1� e�d=d0 will appear as straight lines, the insert shows a standard linear scale. For DI and PI, these curves show a clear exponential
convergence to 1, with characteristic distance scales of 3.6 resp. 4.4 Å. MI does not show any exponential behavior, and thus no characteristic
distance scale (color online).
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couplings is required for the prediction of intra or interpro-
tein residue–residue contacts, which has become the most
important application of coevolutionary modeling.
Furthermore, studies about protein mutational effects (Levy
et al. 2017) and the prediction of protein–protein interactions
(Szurmant and Weigt 2018) have underlined the importance
of pairwise couplings.

Is there information hidden in large MSA, which cannot be
captured by pairwise models? Does one need to include
higher-order couplings into the modeling? The highly accu-
rate inference of pairwise models obtained by bmDCA, repro-
ducing faithfully the empirical first- and second-order
statistics, allows to address these questions systematically.
To this aim, we use MCMC samples from the inferred models
to compare statistical observables, which are not a direct con-
sequence of the fitted covariances. These comparisons unveil
the astonishing capacity of bmDCA to capture local and
global statistical features, which are not explicitly fitted by
the model: pairwise couplings are not only necessary for char-
acterizing sequence variability between homologs, but they
also seem to be sufficient.

First, we observe that the three-residue statistics is accu-
rately reproduced by our model including only pairwise cou-
plings: figure 3 (cf. supplementary section 5.2, Supplementary
Material online, for other families) shows a density-colored
scatter plot of the connected three-point correlations of the
natural sequences versus the MCMC sample drawn from the
model. Correlations are high across all protein families for the
pairwise model, with close to perfect Pearson correlations
ranging from 0.978 to 0.997, cf. table 1. Profile models, which
by definition do not have any connected three-point corre-
lation, can be seen as null model testing the strength of three-
point correlations emerging due to finite sampling. As is
shown in figure 3D, they are at least one order of magnitude
smaller than those found empirically, underlining the signif-
icance of our findings. The only exception is family PF00096,
where no significant connected three-point correlations are
detectable in the MSA or in the sample. Note that we use
connected correlations cijkðA; B; CÞ ¼ fijkðA; B; CÞ � fijðA; BÞ
fkðCÞ � fikðA; CÞfjðBÞ � fjkðB; CÞfiðAÞ þ 2fiðAÞfjðBÞfkðCÞ,
which are intrinsically harder to reproduce than three-point
frequencies fijkðA; B; CÞ. Note also that our result is far from
being obvious: a Gaussian model with the same covariances
would have vanishing three-point correlations, while the se-
quence data and the sample from our DCA model do not.
Further more, it is easy to construct models with discrete
variables, whose three-point correlations are not reproduced
by a pairwise DCA model. This is shown in supplementary
section 4, Supplementary Material online, via analytical cal-
culations and numerical simulations.

To complement the three-point statistics, we investigated
more global quantities. The first one is the clustered organi-
zation of protein families in sequence space. Figure 3A shows
all sequences mapped onto their first two principal compo-
nents for PF00072 (cf. Supplementary Material online for
other families). We observe a clear clustering into at least
three distinct subfamilies, which identify different functional
subclasses of the PF00072 protein family (single domain vs.

multi-domain architectures with distinct DNA-binding
domains). A sample drawn from a profile model does not
reproduce this clustered structure (B), while the MCMC sam-
ple of the bmDCA model does, including the fine structure of
the clusters (C). Again, this structure is not a simple conse-
quence of the empirical covariance matrix as a sample from a
Gaussian model with the same covariances would not show
any clustering.

As a last measure, we compared the pairwise Hamming
distances between sequences in the natural MSA and in the
model-generated sequences. Again the pairwise bmDCA
model is needed to reproduce the bulk of the empirical dis-
tribution of pair distances. Interestingly, a difference between
the two becomes visible in the small-distance tail of the histo-
grams in figure 3G: while natural sequences may be close to
identical due to a close phylogenetic relation, small sequence
distances are never observed in an equilibrium sample of the
bmDCA model, that is, a part of the phylogenetic bias present
in the MSA is avoided by the bmDCA model.

Discussion
This article unveils a number of reasons behind the success of
global pairwise models in extracting information from the
sequence variability of homologous protein sequences. First,
we show that residue–residue correlations actually result
from the collective variability of many residues, and are not
the result of a few strong coupling chains. Therefore, local
statistical measures taking into account only a small numbers
of residues at a time (like correlation measures) are necessarily
limited in their capacity to represent the data, and global
modeling approaches are needed.

One of the most astonishing findings is that many features
of the data, which are not explicitly fitted by a pairwise model-
ing, are nevertheless well reproduced by the inferred models.
This includes higher-order correlations, like the connected
three-point correlations considered here, and more general
aspects of the distribution of amino-acid sequences like the
histogram of pairwise Hamming distances between pairs of
sequences or the clustered organization of the sample in se-
quence space. Interestingly, only the small distances between
phylogenetically closely related sequences are not reproduced
in a sample drawn from the inferred DCA model. This capac-
ity to reproduce the sequence variability beyond the fitted
empirical observables distinguishes the DCA model (fitting
one- and two-residue frequencies) from profile models of
independent residues (fitting only one-residue frequencies).
While the restriction to pairwise models was initially moti-
vated by the limited availability of sequence data—three-
point correlations require to estimate frequencies for 213 ¼
9261 combinations of amino acids or gaps—we find that
even for large MSA pairwise models seem to be sufficient
to capture collective effects beyond residue pairs.

Note that this argument does not rule out the existence of
higher-order residue effects in the underlying evolutionary
processes shaping the sequence variability in homologous
protein families (cf. Merchan and Nemenman 2016;
Schmidt and Hamacher 2017). However, their statistical
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signature is not strong enough to be detectable via deviations
from the behavior of a pairwise model, even in the large
families considered here. Random samples drawn from a
DCA model based exclusively on the knowledge of the em-
pirical one- and two-residue statistics appear to be statistically
indistinguishable from natural sequences.

This finding is particularly interesting in the context of
work made few years ago by the Ranganathan lab (Russ
et al. 2005; Socolich et al. 2005). Using the small WW domain,
they applied a number of diverse procedures to scramble
MSA of natural sequences to produce artificial sequences.
Scrambling MSA columns to maintain residue conservation
while destroying residue correlations, lead in all tested cases
to nonfolding amino-acid sequences. A procedure maintain-
ing also pairwise correlations lead to a substantial fraction of
folding and functional proteins. Later on it has been observed
that the functional artificial sequences actually have the high-
est probabilities within pairwise coevolutionary models

(Balakrishnan et al. 2011). These findings open interesting
roads to evolution-guided protein design (Reynolds et al.
2013).

Note, however, that the finite size of the input MSA
requires to use regularized inference, which penalizes large
absolute parameter values. It leads to a small bias visible in
figure 1B: small pair frequencies are slightly but systematically
overestimated by DCA. This may smoothen the inferred sta-
tistical model, cf. (Otwinowski and Plotkin 2014) for the re-
lated case of inferring epistatic fitness landscapes. As a
consequence “bad” sequences may be given high probabilities
in our model. Based on the findings presented in figures 1B
and 3, we expect these effects to be minor. When increasing
the regularization strength beyond parameters used in this
study, the clustered structure of sampled sequences (fig. 3C)
disappears gradually. Data in large MSA allow to use small
regularization, thereby simultaneously limiting overfitting of
statistical noise and reducing biases in parameter inference.

FIG. 3. Nonfitted statistical observables are captured by DCA: (A–C) Natural sequences (PF00072—A) and MCMC samples from inferred profile
(B) and bmDCA (C) models are projected on the first two principal components of the natural MSA. (D and E) Three-point correlations of samples
of the profile (D) and bmDCA (E) models, as compared to the three-point correlations in the natural sequences. (F and G) Histograms of all pairwise
Hamming distances between natural or MCMC sampled sequences, for profile (F) and bmDCA (G) models. Surprisingly bmDCA is able to
reproduce all three nonfitted statistical properties of the natural MSA, with the difference of the small distances between close homologs, while the
profile model not taking into account residue–residue couplings does not. This suggests that accurately inferred pairwise models are necessary and
sufficient to capture the residue variability in families of homologous proteins. Similar results are observed across all studied protein families, as is
documented in supplementary sections 5.2–5.4, Supplementary Material online (color online).
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This may be impossible for small MSA, so the ongoing growth
of sequence databases is key for the wide applicability of
global statistical sequence models.

One potentially important limitation remains: the distri-
bution of sequences in sequence space is not only determined
by functional constraints acting on amino-acid sequences,
but also by phylogenetic relations between sequences.
Natural sequences are, even beyond the very closely related
sequences not reproduced by the DCA model, far from being
an independent sample of all possible amino-acid sequences.
They are correlated due to finite divergence times between
homologs, and due to the human selection bias in sequenced
species. Any model reproducing the full empirical statistics of
the MSA describes therefore a mixture of functional and
phylogenetic correlations, while an ideal model would con-
tain the functional ones and discard the phylogenetic ones.
How these can be disentangled remains an important open
question.

Materials and Methods

Protein Families
We have selected ten protein families of known three-
dimensional structure which belong to the largest 20 Pfam
families (Finn et al. 2014), which are not repeat proteins (i.e.,
they are not just frequent because repeated many times on
the same protein), and have an aligned sequence length be-
low 200 amino acids (for computational reasons), cf. table 1.
Sequences with more than 50 alignment gaps are removed.
The resulting sequence numbers are reported in table 1. The
main reason to include only large Pfam families is the possi-
bility to accurately estimate three-point correlations. For each
triplet of residue positions, there are 213¼ 9,261 combina-
tions of amino acids or gaps. Nonsystematic tests in smaller
protein families show that our main findings of the paper
translate directly to these families.

Boltzmann Machine Learning
DCA infers a Potts model

PðA1; . . .;ALÞ ¼
1

Z
exp

X
i< j

JijðAi;AjÞ þ
X

i

hiðAiÞ
( )

(3)

reproducing the single- and two-residue frequencies found in
the input MSA:P

fAkjk 6¼ig PðA1; . . .;ALÞ ¼ fiðAiÞP
fAkjk 6¼i;jg PðA1; . . .;ALÞ ¼ fijðAi;AjÞ

(4)

with empirical frequencies fiðAiÞ and fijðAi;AjÞ defined,
respectively, as the fraction of sequences in the MSA
having amino acid Ai (resp. Ai and Aj) in column i
(resp. in columns i and j) (cf. supplementary section 1,
Supplementary Material online for a precise definition of
these frequency counts, including a sequence weighting
to reduce phylogenetic biases). For the sake of contact
prediction, this inference can be done with efficient
approximation schemes like mean-field of pseudo-

likelihood maximization. The objectives of this study—
to understand the collective variability of the residues—
require a more precise inference based on the classical
ideas of Boltzmann-machine learning (Ackley et al.
1985). It consists of an iterative procedure where

(i) for a given set of model parameters fJij; hig, Markov-
chain Monte Carlo (MCMC) sampling is used to estimate the
one- and two-point frequencies of the model;

(ii) parameters are adjusted when the estimated model
frequencies deviate from the empirical ones.

To reduce finite-sample effects, the model parameters are
subject to an ‘2-regularization. The likelihood function is con-
vex, guaranteeing convergence to a single globally optimal
solution, which reproduces the empirical one- and two-
point frequencies with arbitrary accuracy. The direct imple-
mentation of Boltzmann-machine learning is computation-
ally very slow. We have therefore introduced a
reparameterization of the model, which allows to replace
the gradient ascent of the likelihood by a faster pseudo-
Newtonian method. Technical details of the implementation
are described in supplementary section 2, Supplementary
Material online.

From Direct Couplings to Indirect Correlations
Quantifying the Strength of a Coupling Chain
To quantify the strength of a coupling chain, we generalize
the direct information introduced in (Weigt et al. 2009).
There, the direct probability

Pdir
ij ðAi;AjÞ ¼

exp fJijðAi;AjÞ þ ~hiðAiÞ þ ~hjðAjÞg=Zij :
(5)

was defined as the hypothetical distribution of two residues i
and j connected only by the inferred direct coupling Jij and
having the empirical single-residue frequencies fiðAiÞ and
fjðAjÞ, thereby removing all indirect effects from model P.
Parameters ~hi and ~hj are to be adjusted to ensure correct
marginals. The path probability between positions i1 and iLþ1

through the length-L path ½i1; i2 . . . iLþ1� is a direct
generalization:

Ppath
½i1...iLþ1�ðAi1 ;AiLþ1

Þ ¼
P
fAi2 ...AiLg

fi1ðAi1Þ
YL

l¼1

Pdir
ilþ1 il
ðAilþ1
jAilÞ ;

(6)

with Pdir
ij ðAijAjÞ ¼ Pdir

ij ðAi;AjÞ=fjðAjÞ. Equation (6) con-
tains the product of direct probabilities for all links in
the path, in analogy to a Markov chain. The sum over all
configurations taken by intermediate sites ½i2 . . . iL� is
performed efficiently by dynamic programming; the def-
inition guarantees the empirical marginals in all sites on
the path.

To measure the correlation mediated by direct links or
indirect paths, we use variants of the mutual information
based on the direct and path probabilities. To this aim, we
define the direct information (DI) as
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DIij ¼
Xq

Ai;Aj¼1

Pdir
ij ðAi;AjÞ log

Pdir
ij ðAi;AjÞ

fiðAiÞfjðAjÞ
; (7)

and the path information (PI) as

PI½i...j� ¼
Xq

Ai;Aj¼1

Ppath
½i...j�ðAi;AjÞ log

Ppath
½i...j�ðAi;AjÞ
fiðAiÞfjðAjÞ

: (8)

The full mutual information (MI) is defined by replacing
Pdir or Ppath by fij.

The Joint Effect of Paths of Length 2
Quantifying the strength of a group of indirect effects be-
tween two sites i and j is in general non trivial. However, it is
possible if one only considers all chains of couplings that go
through at most one intermediary site k. In other words, one
can combine the direct path ½ij� and all the chains of the form
½ikj� (k 6¼ i; j) into a single probability distribution:

PL2
ij ðAi;AjÞ /

PdirðAi;AjÞ
ziðAiÞzjðAjÞ

�
Y
k 6¼i;j

Ppath
½ikj� ðAi;AjÞ; (9)

where zi and zj ensure PL2
ij to have marginals fi and fj. The

path probabilities can be simply multiplied since each in-
termediate residue k appears only once, and they become
conditionally independent for given (Ai, Aj). The correla-
tion resulting from this combination of paths is the mutual
information of PL2

ij , called L2I.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online. Code and raw data can be accessed via
Github (https://github.com/matteofigliuzzi/bmDCA; last
accessed January 2018).
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