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Abstract

As pathogens spread in a population of hosts, immunity is built up and the pool of susceptible
individuals is depleted. This generates selective pressure, to which many human RNA viruses,
such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent
emergence of immune evasive variants. However, the host’s immune systems adapt and
older immune responses wane, such that escape variants only enjoy a growth advantage for a
limited time. If variant growth dynamics and reshaping of host-immunity operate on
comparable time scales, viral adaptation is determined by eco-evolutionary interactions that
are not captured by models of rapid evolution in a fixed environment. Here, we use a
Susceptible/Infected model to describe the interaction between an evolving viral population
in a dynamic but immunologically diverse host population. We show that depending on
strain cross-immunity, heterogeneity of the host population, and durability of immune
responses, escape variants initially grow exponentially, but lose their growth advantage
before reaching high frequencies. Their subsequent dynamics follows an anomalous random
walk determined by future escape variants and results in variant trajectories that are
unpredictable. This model can explain the apparent contradiction between the clearly
adaptive nature of antigenic evolution and the quasi-neutral dynamics of high frequency
variants observed for influenza viruses.
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This important study provides a new perspective on how human immunity shapes
the antigenic evolution of pathogens. By combining theory and simulation the
authors make a compelling case for the importance of eco-evolutionary interactions
in population-level virus-host dynamics, which arise due to coupling between the
dynamics of immune memories and viral variants. Although the work does not
propose improved data-driven viral forecasting methods, it makes a conceptual
contribution that advances the field's understanding of this problem's intrinsic
difficulty.
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Introduction

Many human RNA viruses adapt rapidly to evade pre-existing immunity and re-infect humans
multiple times over their lifetime. The most prominent examples of this evolution are influenza
virus and SARS-CoV-2 [1     , 2     ], for which the changing virus population is surveilled in great
detail and vaccines are updated regularly. To improve the match between the virus population
and the vaccine, several groups are working on predictive models to anticipate the variants that
dominate future viral populations [3     , 4     ],

A common framework to model the rapid evolutionary dynamics of RNA viruses is to consider a
population located away from the fitness optimum and with many accessible beneficial mutations
[5     ]. In this setting, clones compete to accumulate beneficial mutations as quickly as possible. In
a process called selective sweep, successful variants expand and tend to be the ancestors of the
future population while less successful mutants eventually disappear. The resulting fitness
distribution is a wave traveling along the fitness axis, the so-called traveling fitness wave [6     –
8     ]. As the pathogen circulates, hosts develop immunity which leads to a ‘deterioration of the
environment’ for the pathogen which approximately balances the increase in average fitness due
to adaptation.

The traveling wave framework has been extensively used in this context as it allows for a
straightforward way to approach the prediction problem: each variant is assumed to have a fixed
fitness relative to other variants, and inferring the fitness of all competing variants should allow
prediction of the future composition of the population. Indeed, current methods typically infer the
instantaneous growth advantage of a strain based on past and present circulation and then project
this growth advantage forward in time [9     –11     ], While future mutations can reshuffle the
relative fitness of lineages and thereby limit predictability, in these models a lineage that is most
fit at any given time is most likely to dominate in the long run.

One short-coming of the traveling wave approach is the lack of explicit representation of the
epidemiological dynamics and of the host’s immunity. Indeed, fitness is only an effective
parameter that summarizes the complex interplay between viral antigenic properties and the
hosts’ immune systems. As such, it cannot explicitly describe important phenomena such as the
build-up of host immunity to new variants, variant specific immunity, or the interaction between
strains through antigenic cross-reactivity. Taking the hosts’ immunity and viral cross-immunity
into account has the potential to strongly improve predictions [4     ] or explain why prediction is
difficult [12     ],

The interaction between epidemiological dynamics and hosts’ immunity are often modeled using
generalizations of the Susceptible-Infected-Recovered model (SIR) to include multiple viral strains
[13     , 14     ], In this setting, the natural question is that of the ultimate fate of the pathogen: will it
go extinct, diversify to the point of speciation, or reach the so-called Red Queen State where new
strains continuously replace old ones [15     –18     ]. To remain tractable, these studies typically
approximate population immunity as a low-dimensional landscape in which the viral population
evolves and ignore the complex heterogeneity in the immunity of different individuals.
Furthermore, immunity is often assumed to be long-lived and evolution of the pathogen in a stable
low dimensional landscape gives rise to traveling waves.

Here, we study how novel variants of a virus shape the host population’s immunity, which in turn
changes their own growth dynamics. To do so, we use a multi-strain SIR model combining immune
waning and heterogeneous immunity of the hosts. Such heterogeneity has been demonstrated for
influenza virus in individuals of different ages [19     , 20     ]. We show that this model generically
leads to a situation where novel immune evasive variants emerge. In a homogeneous population
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of hosts, this leads to a succession of selective sweeps where novel variants compete against each
other and replace previously circulating variants. However, in a heterogeneous population with
more rapid waning of immunity, initially growing variants lose their selective advantage before
reaching fixation due to immunological adjustment of the host population. The phenomenology of
our epidemiological model is reminiscent of ecological systems such as consumer resource
models, where adaptation by one species shifts the global equilibrium and distribution of other
species but does not necessarily result in a selective sweep [21     ], In these systems, adaptation
can usually not be modeled by a fixed fitness parameter for each strain but rather depends on the
composition of the population [22     ],

Strain dynamics in our model differ qualitatively from what is expected in the traveling wave
scenario. While adaptive mutations are highly overrepresented in genetic diversity, they cease
having a growth advantage when reaching intermediate frequencies, a process we call “expiring
fitness”. Once the fitness effect of a mutation has expired, its frequency randomly changes up or
down as subsequent adaptive mutations occur on the same or on different genomic backgrounds.

This resemblance to neutral evolution could have important consequences for predictability of
viral evolution. It is interesting to relate this to the recent observations that the evolution of
influenza is not as predictable as one would expect from typical models [11     , 12     ], In
particular, we observed in [12     ] that the frequency trajectories of mutants of A/H3N2 influenza
show features that are expected in neutral evolution but hard to explain in a traveling wave
framework.

Results

1. Multi-strain SIR model
We describe the interaction of several viral strains and host immunity using a Susceptible/Infected
compartmental model, similar to those used in [14     , 15     ]. In the most general form, the model
describes N variants of the virus labeled a ∈ {1… N} circulating among M groups of hosts with
distinct exposure histories labeled i ∈ {1… M} (immune groups). These groups could be different
age cohorts or could be geographically separated. For each group i, we define compartments 
and  as respectively the number of individuals of this group infected or susceptible to strain a.
We assume that the total population of hosts is 1 so that we always have 0 ≤ ,  ≤ 1, and values
of  and  can be interpreted as fractions of the host population.

As with usual compartmental models, we assume that the dynamics are driven by the interaction
of susceptible and infected hosts, leading to infections and gains of immunity. The rate at which
hosts of group i susceptible to variant a are infected by a is . Here, α is an overall infection
rate while Cij represents the probability of an encounter between individuals of group i and j.
Thus, the above rate takes into account infections with strain a caused by hosts of all groups.
Considering that infected hosts recover at rate δ, we can thus write the dynamics for :

When a host of group i is infected by strain b, it gains immunity against the infecting strain b, but
also to other strains a with probability 0 ≤  ≤ 1. Thus,  decreases at a rate proportional to 
and to the number of hosts infected by b for every strain b. Since susceptibles to a are depleted by
infections from other strains, the dynamics of all strains are coupled. This coupling is determined
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by the matrices Ki of dimension N × N, which in general differ between groups i with different
prior exposure history. Additionally, waning of immunity at a rate γ causes immune hosts to re-
enter the susceptible compartment. We can now write the dynamics of  as

where the first term accounts for immunity gains (or loss of susceptibility) due to infections or
cross-immunity while the second represents immune waning. This model introduced by Gog and
Grenfell [14     ] assumes that immunity builds up through exposure and not only through
infection. This explains that the change in  is simply proportional to  · , regardless of the
susceptibility of hosts to strain b. Alternative models that require infection for acquisition of
immunity have qualitatively similar dynamics, but are mathematically more complex (see
supplementary material). We also represented loss of susceptibility to a due to exposure to a using
a trivial cross-immunity term .

An important property of our model is that the probability to generate cross-immunity can differ
between groups. The motivation is that strains a and b may be perceived as antigenically different
by some immune systems, leading to a low , but as highly similar by others, leading to  ≃ 1.
Such a heterogeneous response by different immune systems has been observed experimentally in
the case of influenza: in [19     , 20     ] for instance, it was found that a given mutation in an
influenza strain may allow escape from the antibodies of some individuals, i.e. low . while it had
little effect for the serum of other individuals, i.e. high . Heterogeneous immune response could
be caused by varying histories of strain exposure for different individuals, for instance due to
difference in age or geographical region. If immune groups correspond to age cohorts, mixing
between groups is rapid, and we can simplify the connectivity between groups to Cij = 1/M. If
immune groups are shaped by geographic differences in exposure, the connectivity would be close
to 1 on the diagonal (1 − Cii ≪ 1) while off-diagonal terms would be small (Cij ≪ 1 for i ≠ j).

2. Invasion of an adaptive variant
Hosts’ immune heterogeneity and strain cross-immunity play two different roles in the model. The
latter allows the model to reach a non-trivial equilibrium where multiple strains co-exist, while
the former affects the convergence to the equilibrium.

To illustrate this, we design a simple scenario with only two strains: a wild-type and a variant.
Accordingly, indices (a,b) describing strains will take values {wt,v}. We consider that the two
strains share the same infectivity rate α, which amounts to say that they would have the same
reproductive rate in a fully naive population. The case where the two strains differ in intrinsic
fitness is explored in detail in the SI. In brief, as long as the difference in intrinsic fitness is not too
large compared to cross-immunity effects, the qualitative results given below hold, while larger
intrinsic fitness differences lead to more classical dynamics like selective sweeps.

In the first version of this scenario, we will only consider one immune group, that is M = 1. We can
thus skip the indices i, j ∈ {1… M}, and we only have one cross-immunity matrix K that we
parametrize as
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with 0 ≤ b,f ≤ 1. b quantifies the amount of “backward”-immunity to the wild-type caused by the
variant: a large b means that it is likely that an infection by the variant causes immunity to the
wild-type. Conversely, f quantifies the “forward”-immunity: infections by the wild-type causing
immunity to the variant. If f = b = 1, the two strains are antigenically indistinguishable, and thus
essentially identical for the model. Conversely, if f = b = 0, the two strains are completely distinct
and do not interact through cross-immunity.

The dynamical equations now take a simplified form:

We can immediately derive the equilibrium state for this simplified case. We first define the
reproductive number of strain a as Ra = αSa/δ: Ia grows when Ra > 1 and declines when Ra < 1. The
equilibrium susceptibility is therefore Sa = δ/α, such that Ra = 1. On the other hand, the
equilibrium prevalence is determined by the inverse of the cross-immunity matrix K:

with  being the vector [1; 1], The order of magnitude of the prevalence is given by the ratio of the
rate of waning γ(1 − δ/α) and the recovery rate δ. In the following, we frequently use values α = 3
and γ = 5 · 10−3 in units of inverse generations δ, i.e. we set δ = 1. At equilibrium, this corresponds
to a fraction ~0.003 of the host population being infected at any time. If generation time is a week,
which is roughly the case for respiratory viruses such as influenza virus or SARS-CoV-2, the
fraction of hosts infected in any year is ~ 0.15, which is of similar magnitude as empirical
estimates for influenza [23     ].

It is also straightforward to compute the fraction of infections caused by the variant at
equilibrium, thereafter referred to as the frequency of the variant. We find that this frequency is

In the case where b = f, the variant will ultimately settle at frequency 1/2. This includes the case
where b = f = 0, where the two strains are completely independent and do not interact. On the
contrary if b ≠ f, the final frequency of the variant can in principle be anywhere between 0 and 1.
For example if b > f, the variant is more likely to cause immunity to the wild-type than the wild-
type is to cause immunity to the variant. In this case, β > 1/2 and the variant will be the dominant
variant.

We are primarily interested in an “invasion” scenario where only the wild-type is initially present
in the population, that is Iv = 0 at t < 0. Cross-immunity with the resident strain reduces the
fraction of hosts susceptible to the variant below one even though it has not circulated yet. But the
number of susceptible hosts is always larger than the equilibrium value δ/α unless f = 1, As a
result, the growth rate of the variant is initially positive and Aven bv
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The variant thus increases initially exponentially until it has become sufficiently frequent that it
starts having a substantial effect on the immunity landscape, before eventually settling into an
equilibrium with the wild-type. The details of the equilibrium reached by the system in the
absence of additional mutant variants is given in the SI. Figure 1      explores different scenarios
numerically.

The top row of Figure 1      shows the dynamics of the model after the introduction of the variant
in a homogeneous population (M = 1). As expected, the number of infections by the variant
initially rises while the number of susceptibles Sv decreases. However, as Sv goes below the critical
value δ/α, Iv starts to decline and then oscillates around the equilibrium value before finally
converging to it. The mathematical properties of these oscillations are discussed in the SI.

However, these strong and slowly damped oscillations are not what is observed in circulating
viruses. For instance, in the first oscillation in the specific example of Figure 1     , the prevalence
of the wild-type Iwt goes down to microscopic levels and the frequency of the variant approaches
one, see Figure 1     . During stochastic circulation in a finite population of hosts the wild-type
would likely be lost. The theoretical equilibrium that is reached at long times is thus not very
relevant, and what would be actually observed in reality is a selective sweep by the variant.

Oscillations are the consequence of the rapid rise of the variant followed by an overshoot. This
effect is mitigated by immunological heterogeneity, as shown in the following example with M = 10
groups. For group i = 1, the cross-immunity matrix K1 takes the same form as in the previous
scenario, given by Equation 3     . However, for other groups, we assume that the two strains are
virtually identical, with the cross-immunity having the form

where ε ≪ 1. Our reasoning is that we expect an adaptive variant to escape the existing immunity
for part of the host population, here immune group 1, while having little effect on the rest of the
hosts.

One consequence of many groups that are indifferent to the variant is that globally the excess
susceptibility to the variant is lower. If mixing is rapid, the initial growth rate of the variant is
smaller by a factor M compared to the one-group case. If mixing is slow, the initial growth of the
variant is as rapid as in the one-group case, but then spreads only slowly across groups. Globally,
the frequency of the variant thus never reaches values close to one and population wide
oscillations are reduced.

The central and bottom rows of Figure 1      show the result of the invasion for M groups
respectively for the rapid and slow mixing cases. In both scenarios, the initial number of hosts
susceptible to the variant is now closer to δ/α. When mixing is fast, the frequency of the variant
initially resembles a standard selective sweep (dashed line in Figure 1     ) before saturating, while
dynamics are more complicated for the slow mixing case. Either way, the main effect of the
immune groups is that the overshoot past the equilibrium is much smaller and dampening of the
oscillations stronger. As a result, the frequency of the variant approaches its equilibrium value
without effectively sweeping to fixation before.

Notably, the equilibrium frequency in the above examples does not depend on M and Equation
6      remains valid for ε = 0. This invariance is a consequence of the fact that for ε = 0, the variant
and wild-type strains are completely equivalent in immune groups i > 1 and equilibrium is only
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FIG. 1.

Invasion scenario for Top row: one immune group, Middle row: M = 10 immune groups and fast mixing Cij = 1/M and
Bottom row M = 10 immune groups and slow mixing Cij = 1/10M. Other parameters are the same for all rows: in units of δ,
we set α = 3 and γ = 5 · 10−3, and f = 0.65, b = 0.8, ε = 0.01. For both rows, graphs represent: Left: number of hosts infectious
with the wild-type and the variant; Middle: number of hosts susceptible to the wild-type and the variant, with the equilibrium
value δ/α as a gray line; Right: fraction of the infections due to the variant. The thick gray line shows the expected
equilibrium frequency β in the case with one immune group, given in Eq. 6     . The dashed line shows the trajectory of a
constant fitness logistic growth with the same initial growth rate.
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determined by cross-immunity in group i = 1 (see SI). For small ε the equilibrium shifts slightly, but
Equation 6      remains a good approximation.

While this simple two-strain model predicts that the two strains come to an equilibrium at
frequency β, their frequency will of course continue to change due to emergence of additional
strains, which we will discuss below.

Even though the variant has a clear growth rate advantage when it appears, this does not result in
it replacing the wild-type. This contrasts with the typical “selective sweep” that occurs when the
growth rate advantage stays constant, which is illustrated as a dashed line in the figure. We refer
to frequency trajectories of a variant that at first rise exponentially before settling at an
intermediate frequency as partial sweeps. As we will discuss below, such partial sweeps can lead to
qualitatively different evolutionary dynamics and its predictability.

If the initial growth is due to higher susceptibility, it is misleading to think of it as an intrinsic
fitness advantage of the variant. Instead, the initial growth is the result of an imbalance in the
immune state of the host population, which gradually disappears as the variant becomes more
frequent, as shown in the central panels of Figure 1     . In this sense, our model is comparable to
ecological systems where interaction between organisms cannot be fully explained using a fixed
scalar fitness for each strain but rather depends on the composition of the viral and host
population. In particular, the stalling of frequency increase giving rise to the partial sweep is
reminiscent of consumer resource models [21     , 22     ], highlighting the link between ecological
and epidemiological models. An important consequence of these dynamics is that predicting the
equilibrium frequency reached by the variant and its ultimate fate is hard from the observation of
a partial frequency trajectory.

3. Ultimate fate of the invading variant
In the invasion scenario discussed above, dynamics stop after the initial variant has reached an
equilibrium frequency. However, as the viral population evolves, new adaptive mutants can
appear. In the framework of the SIR model, a new strain translates into extending the cross-
immunity matrix by one row and one column. Each new variant will perform its own partial
sweep, and saturate at frequencies β2, β3, … sampled from some distribution Pβ. This process is
shown in panel A of Figure 2     , using the SIR model to simulate up to N = 7 variants. For the sake
of illustration, it shows a simple scenario where the initial variant appears at time 0 in a
homogeneous wild-type population, and subsequent mutants appear at regular time intervals.
Simulations are performed using M = 10 immune groups, resulting in a slight overshoot of the
equilibrium frequency for each trajectory.

Here, we focus on the mutation or set of mutations A that defines the initial variant. The initial
growth rate advantage given by A eventually disappears, meaning that after some time we can
consider it as neutral. As subsequent mutants appear, they either do so on the background of the
wild-type, in which case they do not carry A, or on the background of the initial variant in which
case they do carry A. If we suppose that recombination is negligible, the frequency of A increases
or decreases as each new variant undergoes its own partial sweep. This process is shown in panel
B of Figure 2     , with shades of red (resp. blue) indicating a variant carrying A (resp. not carrying
A). The thick line in between the red and blue surfaces indicate the frequency at which mutation A
is found, and in practice moves up and down randomly.

The scenario illustrated in Fig. 2      suggests that many aspects of the variant dynamics can be
approximated by a simple abstraction: If x is the frequency of a mutation A, a new variant has a
probability x to appear on the background of A and thus carry A, and a probability 1 − x to not
carry A. If new mutants emerged well separated in time with rate p, meaning that they reach
equilibrium before the next variant emerges, and if new variants have a similar cross-immunity
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FIG. 2.

A: Simulation of SIR Equations 1      & 2      with additional strains appearing at regular time intervals. The fraction of
infections (frequency) caused by each strain is shown as a function of time. The first strain to appear at t = 0 is the variant of
interest, and curves are shown in shades of red if they appear on the background of this variant, and of blue if they appear on
the background of the wild-type. B: Same as A but with frequencies stacked vertically. The black line delimiting the red and
blue areas represents the frequency at which the mutations defining the original variant are found. C: Three realizations of
the random walk of Equation 9     , all starting at x ≃ 0.5. Two instances converge rapidly to frequency 0 and 1, corresponding
to apparent selective sweeps, while the remaining one oscillates for a longer time. D: Representation of a partial sweep using
the expiring fitness parametrization of Equation 11     . The frequency x of the variant is shown as a blue line saturating at
value β (gray line). The thin dashed line shows a selective sweep with constant fitness advantage s0. The fitness s is a red
dashed line, using the right-axis.
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with all existing variants (see SI), the dynamics of x(t) are described by a particular random walk:
in each time interval dt, a partial sweep of amplitude β occurs with probability ρdt · Pβ(β),
changing x in the following way:

For example, if a new mutant appearing on the background of A does a partial sweeps of
amplitude β, the frequency of A among the fraction of strains (1 − β) not concerned by the sweep
will still be x, and its frequency among the fraction β of strains concerned by the sweep will be 1.
Overall, this gives a frequency change of Δx = (1 − x)β. A similar reasoning gives us the frequency
change when the new mutant appears on the wild-type background. Finally, if no sweep occurs in
the time interval dt, that is with probability 1 — ρdt, x remains unchanged. The resulting
frequency dynamics of mutations has many similarities to the effect of ‘genetic draft’, that is the
frequency dynamics of neutral mutations due to linked selective sweeps [24     ],

Examples of trajectories from the random walk are shown on panel C of Figure 2     , all initially
starting around x0 ≃ 1/2. Two trajectories converge monotonically to 0 and 1. This is a
consequence of one interesting property of Equation 9     : the probability for Δx to be positive
increases with x, but the magnitude of the upwards steps decreases as 1 − x, and symmetrically
with downward steps. This leads to trajectories leading almost exponentially to 0 and 1: it can in
fact be shown that trajectories that always go downwards or upwards represent a finite and
relatively large fraction of all possible trajectories (see SI). On the other hand, steps away from the
closest boundary are unlikely but much larger, resulting in ‘jack-pot’ events [25     ]. This can be
seen for the blue trajectory in Figure 2     , which oscillates for a longer time.

It is also interesting to look at the moments of the step size Δx. The first two are easily computed,
and we find

The first moment being 0 means that for the random walk, increasingly probable but small steps
towards the closest boundary (0 or 1) are exactly compensated by rarer but larger steps away from
the boundary. Importantly, this means that on average, the trajectory of mutation A is not biased
towards either fixation or loss, regardless of the frequency that the initial partial sweep brought it
to. For instance, a mutation seen at frequency x0 should on average stay at this frequency, which
means in practice that in a finite population it has a chance to reach 1 and fix, and a chance 1 − x0
to reach 0 and vanish.

On the other hand, the second moment resembles neutral drift [26     ]: in neutral evolution, allele
frequency also undergoes a zero-average random walk with the second moment having the form
x(l − x)/N with N being the population size. Therefore, this model would predict an “effective
population size” as  completely independent of the size of the viral population. However,

there are important differences to neutral drift: in neutral evolution, higher moments of order k >
2 decay as N1-k and are thus negligible in large populations, whereas here they are independent of
N and scale as . Depending on higher moments of Pβ, allele dynamics will deviate qualitatively
from neutral behavior.

https://doi.org/10.7554/eLife.97350.2
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4. Abstraction as ‘expiring’ fitness advantage
In general, the dynamics of the SIR model proposed in Equations 1     &2      depend on the
interactions between N strains through an N × N cross-immunity matrix. While this model is
useful to give a mechanistic explanation of partial sweeps, it is in general impractical to analyze
and numerically simulate for a large number of variants. The random walk model introduced
above is simple to analyze and simulate, but assumes that variants rise to their equilibrium
frequency instantaneously.

To explore the consequences of partial sweeps over broader parameter ranges, we propose an
empirical model that has the same qualitative properties as the overdamped SIR, namely a growth
rate that decreases as a strain becomes more frequent and partial sweep trajectories, but is
simpler to analyze and simulate on a large scale. In this effective model, the growth rate s of the
variant is not explicitly set by the susceptibility dynamics in the host population, but instead
decays at a rate proportional to the frequency x of the variant:

The dynamic of x in the first equation is simply given by the usual logistic growth with fitness s. To
mimic increasing immunity against the invading variant, the growth advantage s decreases
proportionally to the abundance of the variant (second part of Eq. 11     ). The initial value of s0 is
connected to the invasion rate of the SIR models given in Eq. A26      of the SI.

The dynamics of this new model are represented in panel D of Figure 2     , with an initial
frequency x0 ≪ 1 and an initial growth rate s0 = 0.05. The initial growth of x is identical to a
classical selective sweep of fitness s0 (represented as a dashed line). However, its fitness advantage
gradually “expires”, as shown by the red line in the figure. As the variant progressively “runs out
of steam”, its frequency finally saturates at a value β given by (see SI)

This final value β depends only on the ratio between the initial fitness advantage s0 and the rate of
fitness decay ν. For a large enough s0, β can be arbitrarily close to 1, meaning that this model still
accommodates for full selective sweeps as a special case. In the general case, x reaches its final
value β < 1 and remains there forever unless other variants appear.

It is important to state that the main aim of this effective model is to qualitatively reproduce the
phenomenology of the SIR, and in particular the partial sweeps, while being easier to simulate. It
recapitulates the salient feature of invading immune evasive variants: (i) initial exponential
growth, and (ii) eventual saturation at an intermediate frequency. We can thus use it to analyze
the long term consequences of the random walk dynamics of Figure 2     . However, we do not
expect the frequency of the variant x to have quantitatively equivalent dynamics in the two
models. In particular, due to its simplicity, this model does not show the complex oscillatory
behavior of the SIR model. Section (A 9) of the SI discusses in more detail the links between the
parameters of the two models and the fundamental differences. While we can express the rate ν at
which the growth rate declines in terms of the parameters of the simplest SIR models, for models
with many groups or with oscillatory dynamics, the decay rate of the growth advantage should be
interpreted as an effective parameter that captures a generic effect of reduced growth with
increasing circulation.

https://doi.org/10.7554/eLife.97350.2
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5. Consequences for predictability and population dynamics
Accurate prediction of dominant viral variants of the future could improve the choice of antigens
in vaccines against rapidly evolving viruses. Specifically, if a potentially adaptive mutation is
observed in a viral population, one would want to know if the corresponding variants will grow in
frequency, and if yes to what point? The typical traveling wave framework would predict that fast-
growing variants should keep on growing until an even fitter one appears. This way of thinking
about the prediction problem has shown mixed results. In the case of A/H3N2 influenza for
instance, we showed that there are few signatures that suggest fit variants grow in frequency
consistently [12     ],

In Figure 3     , we reproduce some of our results of Barrat-Charlaix et al. [12     ] and extend them
to SARS-CoV-2. To quantify predictability, we ask the following question: given the state of a viral
population at times 0, 1,…, t, what can we say about variant frequencies at times t + 1,…? We
performed a retrospective analysis of viral evolution and identified all amino-acid mutations that
were observed to grow from frequency 0 to an arbitrary threshold x*. Adaptive beneficial
mutations should in principle be overrepresented in this group and if they provide a persistent
fitness advantage, we would expect them on average to keep on growing beyond x*. Figure 3     
shows these trajectories for the amino acid substitutions in the HA protein of A/H3N2 influenza,
using data from 2000 to 2023, and the SARS-CoV-2 genome using data from 2020 to 2023. Panels on
the left show all trajectories that reached x* = 0.4, with their average displayed in black. The panels
on the right show the average trajectory for different threshold values x* between 0.1 and 0.8.

While the dynamics of the variants of the two viruses can not be compared directly due to vastly
different sampling intensities and different rates of adaptation, the qualitative patterns differ
strikingly. In the case of influenza, trajectories of seemingly adaptive mutations show little inertia
and on average hover around x* instead of growing. This surprising result is in line with the study
in [12     ] which used data from the period 2000–2018. On the other hand, trajectories of SARS-CoV-
2 mutations show a much smoother behavior with steady growth beyond x*. On longer timescales
however, we observe a systematic decrease in frequency: this is explained by the particular initial
dynamics of SARS-CoV-2, where new variants arose at a rapid pace and replaced old ones. This
process is often called clonal interference and reduces long term predictability.

In our setting of eco-evolutionary adaptation, the random walk model predicts that the probability
of fixation of an immune evasive variant is given by the final frequency β of its initial partial
sweep. Subsequent allele dynamics and diversity are governed by an anomalous coalescent
process driven by the random walk defined in Eqs. 9     , leading to little predictability of evolution.
This abstraction should hold when partial sweeps are instant and do not overlap, meaning that the
rate ρ at which new variants emerge is small compared to their initial growth rate s0.

To explore the behavior of our partial sweep model in a more general setting, we simulate
evolutionary dynamics of a population under a Wright-Fisher model with expiring fitness
dynamics. Simulations involve a population of N viruses with a genotype where each position can
be in one of two possible states σi ∈ {0,1}. Fitness effects Si are associated with mutations at each
position, and the total fitness of a virus is given by F = ∑iσisi. At each generation, viruses with a
fitness F expand by a factor eF, and the next generation is constructed by sampling N individuals
from the previous one. Following Eq. 11     , mutational effects Si decrease by an amount νxi · Si,
where xi is the frequency at which mutation i is found in the population.

We simulate the emergence of adaptive variants in the following way. At a constant rate ρ, we pick
one sequence position i that has no polymorphism and set the fitness effect of the corresponding
mutation to an initial value Si, with an amplitude drawn from probability distribution Ps and the
sign chosen such that the mutation is adaptive. In practice, we use an exponential distribution Ps ∝
e−s/s0, meaning that the typical magnitude of initial fitness effects is described by only one
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Pierre Barrat-Charlaix et al., 2024 eLife. https://doi.org/10.7554/eLife.97350.2 13 of 56Pierre Barrat-Charlaix et al., 2024 eLife. https://doi.org/10.7554/eLife.97350.2 13 of 56

FIG. 3.

Retrospective analysis of predictability of viral evolution: frequency trajectories of all amino acid substitutions that are
observed to rise from frequency 0 to x* for Top: influenza virus A/H3N2 from 2000 to 2023, and Bottom: SARS-CoV-2 from
2020–2023. Left: all trajectories for x* = 0.4, with blue ones ultimately vanishing and red ones ultimately fixing. The average of
all trajectories is shown as a thick black line. Right: showing only the average trajectories for different values of x* (grey
lines).

https://doi.org/10.7554/eLife.97350.2
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parameter s0. The corresponding distribution of partial sweep size is described in the SI. At the
same time, we introduce the corresponding mutant in the population at a low frequency, picking
its background genotype from a random existing strain. The behavior of the model is determined
by (i) the distribution Pβ of partial sweeps size depending on ν/s0, and (ii) the ratio of the variant
emergence rate and their growth rate ρ/s0, which determines how often sweeps overlap and
interact. The probability of two sweeps overlapping is defined in Section (B 2) of the SI.

We use this simulation to address the question of predictability: given the state of the population
at generations 0, 1,…, t, can we predict its state at future times t + 1, …? Specifically, we ask
whether we can predict the frequency x(t + Δt) of a variant A, given it is at frequency x at time t, as
we did previously for influenza virus [12     ], see Fig. 3     . The dynamics of isolated selective
sweeps (ρ/s0 ≪ 1, ν/s0 ≪ 1) should be perfectly predictable: after an initial stochastic phase when
the variant is very rare, its frequency grows monotonically to fixation. This predictability
decreases with increasing ρ/s0 due to clonal interference [27     , 28     ], for example when an
adaptive variant is outcompeted by an even more adaptive one. We also expect predictability to
decrease with increasing ν/s0 since sweeps are then partial and their ultimate fixation determined
by subsequent variants with dynamics that resemble a random walk.

To quantify these effects, we select from a long simulation all rising frequency trajectories of
adaptive mutations that cross an arbitrary threshold x*. The results are shown in panel A of
Figure 4     , where we show the average x(t) of rising frequency trajectories after crossing the
threshold x* = 0.5. We use three rates of fitness decay: ν ∈ [0, s0/3, s0, 3s0] and low clonal
interference ρ/s0 = 0.05. The case ν = 0 corresponds to a classical traveling wave scenario with
constant fitness effects, and, as expected, is the most predictable: the average trajectory rises well
above 0.5. For larger values of ν/s0, corresponding to a quicker decay of fitness, predictability
gradually declines and becomes negligible for ν/s ≪ 1. Note that this matches quite well with the
predictions from the random walk model where the average change in frequency 〈Δx〉 is null.

To explore parameter space more systematically, we quantify predictability as the probability of
fixation pfix of rising variants that cross threshold x*. In a perfectly predictable scenario with well
separated selective sweeps, pfix should be close to 1 regardless of x*, while it should be equal to x*

in an unpredictable setting such as neutral evolution.

In panels B, C and D of Figures 4     , probability of fixations are shown for three values of ρ/s0 and
four values of ν/s0. Clonal interference increases when going from left to right among these panels
(increasing ρ/s0), while the intensity of fitness decay increases when going from blue to red curves
(increasing ν). Increasing either ρ/s0 or ν/s0 reduces pfix towards the dashed diagonal
corresponding to pfix = x*. However, as observed previously [12     ], in the classic scenario with
stable fitness effects ν/s0 = 0 considerable predictability remains even in cases of strong
interference (blue curve in panel D and Figure S3     ). The strong interference setting is explored
in more detail in the SI up to values ρ/s0 ≃ 30, using similar simulations but without expiring
fitness ν = 0. Figure S3      shows that even in these cases of strong interference, pfix remains
significantly above the diagonal.

Finally, we use our simulation to investigate typical levels of diversity in the population and the
time to the most recent common ancestor. One quantity that can easily be estimated from the
random walk model is the average pairwise coalescence time T2, that is the typical time separating
two random strains from their most recent common ancestor (MRCA). In the SI, we show that
under the random walk approximation, T2 = 1/ρ〈β2

〉Pβ, which in neutral models of evolution
would correspond to the effective population size Ne. A more detailed analysis of the coalescent
process reveals that the random walk approximation corresponds to the so-called A-coalescent
[29     , 30     ] (see SI).

https://doi.org/10.7554/eLife.97350.2
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FIG. 4.

Simulations under the Wright-Fisher model with expiring fitness. A: Average frequency dynamics of immune escape
mutations that are found to cross the frequency threshold x* = 0.5, for four different rates of fitness decay. If the growth
advantage is lost rapidly (high ν/s0), the trajectories crossing x* have little inertia, while stable growth advantage (small ν/s0)
leads to steadily increasing frequencies. B,C,D: Ultimate probability of Pfix(x) of trajectories found crossing frequency
threshold x. Each panel corresponds to a different rate of emergence of immune escape variants, with four rates of fitness
decay per panel. Increased clonal interference ρ/s0 and fitness decay ν/s0 both result in gradual loss of predictability. We use
s0 = 0.03. E: Time to most recent common ancestor TMRCA for the simulated population, as a function of the prediction
obtained using the random walk Ne = 1/ρ〈β2

〉. Points correspond to different choices of parameters ρ and Pβ, and a darker
color indicates a higher probability of overlap as computed in the SI.
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In panel E of Figure 4     , the average time to the common ancestor of pairs of strains in the
population is plotted as a function of T2 predicted by the random walk model. Each point in the
figure corresponds to one simulation of long duration with a given distribution of partial sweep
size Pβ and a given ρ setting T2, with darker color indicating a higher probability of overlap as
computed in the SI. We find a good agreement between the empirical time to MRCA and the
estimation from the random walk, at least as long the probability of overlap between successive
partial sweeps is small (indicated by shading, see SI). With increasing overlaps, coalescence slows
down and diversity increases: points in darker shades of red tend to have larger time to MRCA
than what is expected from the distribution of β. This is expected intuitively: if another adaptive
variant emerges before the previous one has reached its final frequency, it has a lower probability
to land on the same background and thus tends to be in competition with the first variant. This
leads to a smaller effective β which slows the dynamics.

Discussion

Evolutionary adaptation is often pictured as an optimization problem in a static environment. In
many cases, however, this environment is changed by the presence of the evolving species, for
example because a host population develops immunity or a dynamic ecology. Here, we have
explored consequences of such eco-evolutionary dynamics in a case of host-pathogen co-evolution
where different variants of a pathogen shape each other’s environment through generation of
cross-immunity.

Influenza virus evolution has been the subject of intense research with efforts to predict the
composition of future viral populations [9     –11     , 31     ]. The A/H3N2 subtype in particular
undergoes rapid antigenic change through frequent substitutions in prominent epitopes on its
surface proteins [32     –35     ]. Given the clear signal of adaptive evolution, one might expect
A/H3N2 to be predictable in the sense that variants that grow keep growing. Yet, it has been
difficult to find convincing signals of fit, antigenically novel, variants that consistently grow and
replace their competitors [11     , 12     ], In contrast, SARS-CoV-2 evolution has been consistently
predictable in the sense that dynamics are well modeled by exponentially growing variants that
compete for a common pool of susceptible hosts. However, even in this case, taking into account
the immune adaptation of hosts leads to a better description of variant dynamics [4     ],

We have shown that depending on (i) the heterogeneity of immunity in the population, (ii) the
asymmetry between backward and forward cross-immune recognition, and (Hi) waning or turn-
over of immunity, the immune escape can either lead to dynamics dominated by selective sweeps,
or to one were escape mutations have an initial growth advantage that dissipates before the
variant fixes. The former scenario is observed when initial growth is fast, backward immunity
high, and waning slow compared to variant dynamics. In this case, new variants can rise to high
frequency driven by their own advantage and fix. Immunological heterogeneity slows down the
initial rise, allowing for population immunity to respond and adjust before the variant has fixed.

This process of partial sweeps reconciles two seemingly contradicting observations: HA evolution
in human influenza A virus is clearly driven by adaptive immune escape and most substitutions
are clustered in epitope regions [36     ]. On the other hand, most substitutions do not sweep to
fixation but tend to meander in a quasi-neutral fashion [12     ], In the partial sweep scenario
proposed here, diversity is dominated by immune escape mutations that are rapidly brought to
macroscopic frequency by their initial growth advantage, but their ultimate fate is determined
mostly by subsequent mutations.

In any real-world scenario, there will be a variety of mutations, including some mutations that
perform complete selective sweeps, either because they escape immunity of a large fraction of the
population (M small), because they generate robust immunity against previous strains (“back-
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boost” [37     ]), or because the increase the intrinsic transmissibility of the virus (for example
reverting a previous escape mutation that had a deleterious effect on transmissibility). The degree
to which partial sweeps matter will vary from virus to virus and will change over time. Recently
emerged viruses circulate in a homogeneous immune landscape and adapt to the new host for
some time, consistent with rapid and complete sweeps of variants in SARS-CoV-2. Similarly,
influenza virus A/HINlpdm, which emerged in humans in 2009, exhibited more consistent
trajectory dynamics than A/H3N2 [12     ],

More generally, qualitative features of the partial sweep dynamics investigated here are expected
to exist in any system where the environment responds to evolutionary changes on time scales
comparable to the time it takes for the adaptive variants to take over, leading to eco-evolutionary
dynamics [38     ]. In ecological systems involving eukaryotes, it is the evolutionary part of this
interaction that is thought of as slow, while ecology is fast. In the case of rapidly adapting RNA
viruses in human populations with long-lived immunological memory, models often assume that
viral adaptation is fast while hosts have long-lasting memory. The most complex and least
predictable dynamics is expected when the evolutionary and ecological time scales are similar and
different host pathogen systems will fall on different points along this axis.
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A. SIR model

1. Equilibrium of the SIR model with one immune group
To help us compute the equilibrium reached by the SIR model, we introduce additional notation:
the vectors  = [S1, …, SN] and  = [I1, …, IN] will respectively represent the compartments of
hosts susceptible and infectious to each strain; the matrix K describes the cross-immunity; the
vector  is a vector of dimension N whose elements are all equal to 1.

We derive the equilibrium state for Equations 1     &2     . For each strain a, equilibrium for Ia is
reached when Sa = δ/α. We thus have . Introducing this in the equation for the derivative of
Sa, we obtain the following equilibrium:

An interesting remark is that at equilibrium, I is of order γ/δ ≪ 1. Note that the structure of K
makes it invertible in most cases. Indeed, we impose Kaa = 1 and 0 ≤ Kab < 1 for a ≠ b.

2. Equilibrium for two viruses with one immune group
We consider the case where two viruses are present, called wild-type (wt) and mutant (m).

The cross-immunity is represented by a 2 × 2 matrix

As shown in the previous section, the equilibrium is given by

https://doi.org/10.7554/eLife.97350.2
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where  stands for [Iwt, Im] and  for [1     ,1     ]. It is straightforward to invert the crossimmunity
matrix, and we obtain

Note that without cross-immunity, the number of infected by either virus would be  Positive
values of b and f thus have the effect of lowering the equilibrium values of Im and Iwt with respect
to the absence of cross-immunity.

It is interesting to compute the fraction of infections due to the mutant at equilibrium. This is
easily derived from the relations above:

A few observations can be made:

if b = 1 and f < 1, then the wild-type vanishes at equilibrium and the mutant reaches
frequency 1. In this case, the presence of the mutant alone is enough to keep Swt to its
threshold value , making it impossible for the wild-type to grow.
inversely, if f = 1, then the mutant stays at frequency 0.
if b, f < 1, the mutant will reach a finite frequency x, with x > 0.5 if b > f and x < 0.5 if b < f.

3. Equilibrium without the mutant
We first derive the equilibrium situation before the mutant virus is introduced in the case with
only one immune group. We remind that in this case there is only one cross-immunity matrix
which has the form

where b is the immunity to the wild-type caused by an infection with the mutant, and f the
reverse.

Since the mutant is absent from the host population, we assume Im = 0. The equilibrium values for
Swt and Iwt are easily obtained from the dynamical equations:

https://doi.org/10.7554/eLife.97350.2
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We then set the derivative of Sm to 0:

Since we assume f < 1, the initial number of susceptibles to the mutant will be larger than δ/α,
allowing initial growth of the mutant. Using the dynamical equation for Im, the initial growth rate
of the mutant can be written as

If f = 0, the growth rate is α − δ, i.e. the one expected in a fully naive population.

If f = 1 however, the growth rate is 0 as the wild-type confers perfect immunity to the mutant.

The equations above generalize to more immune groups. Cross-immunity matrices Ki now depend
on parameters fi and bi, and the initial number of susceptibles in immune group i is given by

In a given immune group i, the mutant growth rate is proportional to . The growth rate of the
mutant will thus be initially faster in immune groups for which it is antigenically different, i.e. fi <
1, than in groups where it is similar to the wild-type, i.e. fi ≃ 1.

In the case of a well-mixed population, that is Cij = 1/M, we can write the growth of the infections
by the mutant  as an exponential growth with a time dependent rate. In this case, the overall
growth rate is given by the derivative of :

In particular, using the invasion scenario from the main text with ε = 0 (i.e. fi = 1) in M − 1 groups
and an arbitrary value f in group 1, we obtain the following growth rate at t = 0:

That is, the initial growth rate for M groups is M times smaller than the one in the single group
case.

In the case of a non well-mixed population, i.e. arbitrary Cij, it is not possible to write a pseudo-
exponential growth rate as in Eq A10. However, it is clear that the initial growth rate will also be
smaller as in the single group case since the mutant initially only grows in group i = l.

https://doi.org/10.7554/eLife.97350.2
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4. Equilibrium with M immune groups
For M immune groups and arbitrary cross-immunity matrices Ki, the equilibrium frequency of the
two strains is not easy to compute. However, it is possible to give an analytical expression in the
regime of fast mixing Cij = M−1 and when the two strains differ immunologically for only one
group, i.e. for matrices

Note that this corresponds to the situation studied in the main text with fast mixing and ε → 0. We
show here that in this case, the equilibrium frequency for all immune groups is the same as the
one obtained for only one immune group with matrix K1. In other words, the expression for β in
Eq. 6      is still valid.

To prove this, we assume the following form for the solution of the dynamical equations:

where the index a runs over all strains (here wild-type and mutant), and where we have defined
the infectious levels for group i, for strain a and globally:

Note that the second equation in Eq. SA12      means that the frequency νq of strain a is the same
accross all immune groups and consequently also globally.

We now show that injecting these expressions of S and I in the dynamical system and solving for
νa gives the expected result. First, note that with this choice of , the derivative of  given by
equation Eq. 1      immediatly vanishes. We thus concentrate on  given by Eq. 2     . For any
immune group i and strain a, we have

where we have used Cij = 1/M and  to remove the sum on immune groups. Multiplying this
equation by νa = Ia/I, we obtain

https://doi.org/10.7554/eLife.97350.2
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We now eliminate  by using the expression  = Iiν
a:

Note that this last expression is true for all strains a. Considering any two strains a and b, we can
thus write

where the last expression is obtained by substracting the two previous ones. First, we see that for i
> 1 any frequency vector ν is a solution since  = 1 for all a, b. For i = 1 and defining νm = β and
νwt = 1 − β and using the expression for K1, we obtain

as claimed.

This result is not completely trivial and should be commented. In this setting, the mutant escapes
immunity built by the wild-type for a fraction 1/M of the population, and yet it reaches the same
frequency as in the case with one immune group. This can be rationalized as follows: for immune
groups i > 1, the cross-immunity matrix is such that the wild-type and mutant strains are
completely equivalent. If immune group 1 was not here, the mutant could thus equilibrate at any
frequency between 0 and 1. Since it is initially introduced at very low frequency, it would remain
marginal in immune groups i > 1. However, since its “natural” equilibrium frequency in group i =
1 is β and since the groups are connected, equilibrium is reached when the mutant reaches
frequency β in all groups.

Note that if we take the situation of the main text with

and ε > 0, the expressions above do not hold. However, if ε ≪ 1, the perturbation is small and we
expect an equilibrium frequency close to β, which the case in Figure 1     .
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5. Realistic modeling of host’s immune state
The SIR model proposed in the main text relies on the assumption of immunity acquisition
through exposure. This explains terms like −α ∑bSaKabIb in the derivative of Sa: acquiring
immunity to a through cross-immunity Kabrequires a combination of prior susceptibility and
exposure to strain b. Importantly, this does not depend on the immune state of the hosts with
respect to strain b.

A more realistic representation would be one where acquiring immunity to strain a from
exposure to b requires being infected by b. However, this would require keeping track more
precisely of the immune state of hosts, as we would need to separate hosts into two groups,
namely

hosts who are susceptible to both a and b, and can thus acquire immunity to a through
infection by b;
hosts who are susceptible to a but immune to b, and can no longer acquire immunty to a
through infection by b.

To test whether our results are robust to such changes of hypothesis, we write a simple SIR model
with two strains a and b where cross-immunity is only activated through infection rather than
exposure. To properly track the immune states of the hosts, we introduce the groups Ra and Rb

respectively representing hosts immune to only a or only b, and Rab representing hosts immune to
both a and b. The compartment R0 = 1 − Ra − Rb − Rab groups hosts susceptible to both strains. It is
simpler in this case to write the dynamics in terms of compartments I and R, rather than I and S as
in the main text. For simplicity, we do not use immune groups here. The dynamics involve two
equations for the infected:

and three for the immune:

In Figure S1     , we show both that the dynamical and equilibrium properties of this model are
qualitatively the same as the one from the main text. On the left panel, we show that the dynamics
of this new model does not differ qualitatively from the model of the main text. In particular, in
the invasion scenario, the frequency of the variant converges to some equilibrium value after
some oscillations. On the right, we show that this equilibrium value β is different but relatively
close to the one from the main text.

6. Change in frequency when adding subsequent strains
This section shows that under certain condition, adding a new variant to the SIR model does not
change the relative frequencies of previous variants. This is an important condition for the
random walk of the main text to be valid.

https://doi.org/10.7554/eLife.97350.2
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Here is a quick summary of the results proved below. Adding a variant to the SI model involves
adding a column  and a row  to the cross-immunity matrix, which can be given by two vectors.
If these vectors only depend on one parameter, i.e.  = b ·  and  = f · , then the relative
frequency of previous strains is unchanged in the new equilibrium. What this means in practice is
that the new strain must be at equal “antigenic distance” from all previous strains. A possible
interpretation is an antigenic space of infinite dimensions: all mutations explore an antigenic
region which is new.

We start from an initial situation where there are N variants with an N × N cross-immunity matrix
K. At equilibrium, the number of hosts infected by each virus a ∈ {1 … N} is given by the elements
of the vector I that can be computed from the cross-immunity matrix and parameters of the
model:

where  is a vector containing only 1’s and of length N. The relative frequency of variant a with
respect to variant b is simply defined as

We assume that the initial population has reached equilibrium.

We now add a new virus to this population, with index N + 1. The new cross-immunity matrix  is
now written as

where  and  are two vectors of length N. This is a general way to write that the backward cross-
immunity to variant a caused by an infection with the new variant N + 1 is ba. Inversely, the
forward cross-immunity to variant N + 1 caused by an infection with an old variant a is fa.

This new cross-immunity matrix will of course result in a new equilibrium for the number of
infected hosts, given by the vector :

The question we ask here is whether the relative frequency of two variants 1 ≤ a,b ≤ N is changed
by the addition of the new variant. In other words, we want to know whether the equality below
holds:

https://doi.org/10.7554/eLife.97350.2
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Figure S 1.

Left: Dynamics of the frequency of the variant for the SIR model from Equations A13     &A14      using the invasion scenario
from the main text. Two 2 × 2 cross-immunity matrices are used, with off-diagonal parameters f and b chosen to give the
same equilibrium. The gray line represents the equilibrium that would be obtained using the model of the main text. Right:
Equilibrium frequency β for this new SIR model (y-axis) versus the β from the main text (x-axis). Each point corresponds to a
given pair (f, b).
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Below, we prove this equality under a condition for cross-immunity of the new variant  and :

where 0 < b, f < 1 are scalars. This amounts to say that cross-immunity is the same between the
new variant N + 1 and any old variant a, i.e. that the new variant is at equal antigenic distance
from all previous variants.

To prove the equality, we perform the computation . To do that, we make use of the following
formula for inverting a block matrix:

where we defined Λ = (D − CA−1B)−1. The following identities map to our problem:

We immediatly see that  reduces to a scalar that we note A for more clarity. We also

define the other scalar value  A few manipulations give us the following for :

Multiplying this by  results in

where we used the equalities .

This result essentially shows that after adding the new variant, the fraction of hosts infected by the
previous variants if simply multiplied by a scalar value 1 − bγ(1 − fμ). This implies that the relative
frequencies of the original variants are conserved when adding a new one.

https://doi.org/10.7554/eLife.97350.2
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7. Case with intrinsic fitness effects
In the SI model of the main text, we assume that the transmission rate a is the same for the
different strains. It is also interesting to investigate the case where this transmission rate varies.
Here, we study a simple extension of the SI model without immune groups where there are two
variants - mutant and wild-type - with respective transmission rates αwt = αϕwt and αm = αϕm. The
quantities ϕwt, ϕm ∈ [δ/α, ∞[can be interpreted as intrinsic fitness values for the two strains. Note
that if ϕa < δ/α, the strain a cannot grow even in a fully susceptible population. The cross-
immunity is as usual defined by matrix K with off-diagonal terms f and b.

The equations of motion are now

Computing the equilibrium, we immediately obtain

where we have defined the following quantities:

The quantities ha can be interpreted as a scaled growth rate of each variant given a fully
susceptible population, and the matrix G combines the cross-immunity and the ratio of fitness
values ϕ. Note that it is straightforward to generalize these equations to an arbitrary number of
strains: the relevant quantity will be the scaled cross-immunity matrix defined by .

Inverting G and simplifying the equations a bit, we obtain

where we defined

Note the interesting structure of equations A22     : for each variant, they involve a first term 
that depends only of the intrinsic growth rate of the mutant, and a second  that involves cross-
immunity and relative growth rate through ξ.

https://doi.org/10.7554/eLife.97350.2
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These equilibrium equations give us two conditions for the co-existence of the two variants,

respectively corresponding to Iwt > 0 and Im > 0. We mention three interesting cases below.

If the mutant has an intrinsic fitness disadvantage ξ < 1, it will only be able to invade if f <
ξ. Since f represents the probability that a host becomes immune to the mutant if infected
by the wild-type, this means that the immune “niche” of the mutant must be large enough
when compared to ξ.
Invertly, if the mutant is fitter and ξ > 1, the mutant is always able to invade. The wild-type
only survives if b < ξ−1, meaning that the immunity to the wild-type caused by the mutant
must be small enough.
If one considers a situation without total cross-immunity, *i.e.* b = f = 1, the only way a
mutant invades is if ξ > 1 meaning ϕm > ϕwt, and the result is a full selective sweep.

8. Oscillations of the SI model
The SI model from the main text tends to oscillate while returning to equilibrium. Here, we study
this behavior in the simple case of one immune group (M = 1) and two viruses (wild-type and
variant).

The idea is to linearize the dynamical equations around the equilibrium. This gives us

where X = [Swt, Sm, Iwt, Im] and

To quantify the convergence to equilibrium is the frequency of the oscillations, we need the
eigenvalues of matrix Q. For low enough γ, we can prove that the four eigenvalues are

This is only valid if the terms in the square roots above are positive, which requires yto be small
enough. In our setting, we assume γ ≪ αδ, so this will always hold.

https://doi.org/10.7554/eLife.97350.2
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From the eigenvalues we can compute:

the rate of convergence to equilibrium: αγ/2δ. This means that convergence is slower for a
smaller waning rate γ.
the two oscillation frequencies that appear:

Note that since (1 − b)(1 − f)/(1 − bf) ≤ 1, we always have ωlow ≤ ωhigh With the values of the main
text α = 3, δ = 1, γ = 5 · 10−3 (units are inverse of generations), we obtain ωhigh ≃ 0.016. If one
generation is one week, this gives us a period , that is approximately one year.

9. Link between parameters of the SIR and expiring fitness models
The effective expiring fitness model used in the second part of this work is characterized by the
system of differential equations

where x is the frequency of the mutant strain. Here, we try to express the dynamics of the SIR
model in this form to find a link between its parameters and the quantities s and ν.

We first focus on the case with two strains and one immune group. The frequency of the mutant is
x = Im/(Im + Iwt). Using the logit function ψ(x) = log(x/(1 − x)) and the dynamical equations of the
SIR, we find

which allows us to define the fitness in the SIR case: s = α(Sm − Swt). At the beginning of the
invasion, the initial growth rate is readily computed:

which is the same as the initial growth rate of Im. Note that if / = 1, the initial growth rate is 0.

We then compute the time derivative of s early in the invasion, when Iwt, Swt and Sm are close to
their equilibrium values. In this case, a straightforward calculation gives

where the approximation is valid if 1 − b ≪ 1. This would give an expiry rate of fitness ν = α(Iwt +
Im) in the case of the SIR model.

https://doi.org/10.7554/eLife.97350.2
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These results can also be obtained in the case of immune groups. We then have the following
expressions for s and ν at t ≃ 0:

where the second expression is again valid if 1 − bi ≪ 1.

Another question is that of the link between cross-immunity parameters b and f and the
distribution of partial sweep sizes β. The relation between cross-immunity and β given by Eq. 6     
shows that the distribution of partial sweep size depends on the distribution of both b and f. As we
do not have a prior on how b and f should be distributed, we explore the case where 1 − f and 1 − b
are exponentially distributed. In other words, we define ϵf = 1 − f and ϵb = 1 − b, with the following
distributions

The expression of the partial sweep size becomes beta = ϵf/(ϵb + ϵf). Note that both e should remain
smaller than 1, which is not guaranteed with exponential distributions. However, this is not
problematic if μ and γ take small enough values.

These assumptions allow us to compute the distribution of beta:

with support on the interval 0 ≤ β β 1. Figure S2      shows the various shapes that P(β) then takes
for different values of the α/γ parameter. Note that if μa > γ, b tends to be higher than f and β is
biased towards one. If μ = γ, P(β) becomes uniform on the [0,1] range.

The exponential distribution away from one of f and b is a reasonable assumption, and allows
analytical derivation of P(β). Of course, any other distribution of f and b could be considered. For
this reason, we choose to use a Beta distribution for Pβ in the analysis of the main text, as it can
accomodate various shapes.

B. Expiring fitness model and random walk

1. Clonal interference
In non recombining genomes with a large mutation rate, the appearance of many adaptive
mutations in close succession leads to clonal interference. In this regime, beneficial mutations
present on different background compete for fixation, and the success of a mutation does not
depend only on its fitness effect but also on the global state of the population. For this reason,
clonal interference causes a decrease in predictability: dynamics are not deterministic but rather

https://doi.org/10.7554/eLife.97350.2
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Figure S 2.

Distribution of partial sweep size β if 1 − f and 1 − b are exponentially distributed. Left: Probability distribution function P(β)
for various values of μ/γ. Right: Mean and standard deviation of β as a function of μ/γ.

https://doi.org/10.7554/eLife.97350.2
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depend on the precise structure of which mutation appeared on which background. For instance,
a beneficial mutation that increases in frequency can be outcompeted by a fitter one before it has
the time to fix, making the extrapolation of frequency trajectories difficult.

We conduct simulations to quantify how much predictability decreases because of clonal
interference, based on the ones of the main text. We study a large population of N = 105 genomes
of length L, where each genome position i can be in either of two states σi ∈ {0,1}. Fitness effects si
∈ ℝ are associated to each position, and the fitness of an individual is F = ∑iSiσi. To simulate the
adaptation of the population, we proceed in the following way: at a constant rate p, we pick a
position i that is non polymorphic and set the fitness effect Si by sampling its magnitude from
distribution Ps and choosing its sign in a way that favors mutations (positive if σi = 0 is more
frequent, negative otherwise). At the same time, the corresponding mutation (σi = 0 if Si < 0 and
inversely) is introduced in the population at a small frequency δf = 0.01. We choose Ps to be an
exponential distribution with scale s0 = 0.02, in agreement with findings on the distribution of
fitness effects in [27     , 40     ].

There is no fitness decay in this simulation, and the parameters N, s0 and δf have numerical values
such that neutral drift is mostly irrelevant to the dynamics of mutations. For example, without
accounting for interference, the probability of fixation of a mutation of effect s0 when it is
introduced at frequency δf is Pfix(ϴf) ≃ 1 − e−40. As a consequence, the two parameters governing
the dynamics are the scale of fitness effects s0 and the rate of introduction of beneficial mutations
ρ. The ratio of these two quantities represents the amount of clonal interference: at low ρ/s0,
mutations are mostly independent, while at high ρ/s0 they strongly interfere.

We measure the probability of fixation pfix(x) of mutations found in a frequency bin [x − δx, x + δx]
over a long simulation. We only consider mutations with increasing frequency, meaning that their
frequency was below x at all times and at some point was measured in the frequency bin. Figure
S3      shows Pfix(x) as a function of x for different values of ρ/s0. According to intuition, a low
clonal interference value leads to easily predictable fixations: whatever the frequency x at which
it is observed, a mutation that is increasing in frequency fixes with a very high probability.
Increasing clonal interference clearly makes dynamics less predictable and closer to neutrality,
with pfix approaching the diagonal line. However, even in a regime of strong interference, e.g. ρ/s0
= 32, deviations from neutrality remain very clear.

2. Expiring fitness effects: sweep size and probability of overlap
This section gives a few results about the expiring fitness equations from the main text. We
rewrite the equations here for reference:

First, we prove the expression for the amplitude of the partial sweeps. We divide the equation for
ẋ by the one for ṡ to obtain

This immediately gives us

https://doi.org/10.7554/eLife.97350.2
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Figure S 3.

Probability of fixation of mutations Pfix(x) of mutation frequency trajectories found crossing the frequency threshold x. Fitness
effects are exponentially distributed with fixed scale s0 = 0.03. The blue to red gradient in colors corresponds to the increasing
rate ρ at which mutations are introduced. Strong clonal interference regime is obtain when ρ/s0 > 1, in which case good
mutations are introduced in close succession and compete for fixation. At low ρ/s0, trajectories are very predictible and an
increasing trajectory almost certainly fixes. Even for for the highest ρ/s0, Pfix(x) remains significantly larger than x and
dynamics are visibly not neutral.
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with γ constant. At t = 0, we have s = s0 and x = x0 ≪ 1, while for t → ∞ we have s = 0 and x = β to be
determined. From the t = 0 case we obtain γ = (x0 − 1)es0/ν, and from t → ∞ we get β = 1 + γ.
Assuming x0 ≪ 1, we obtain the result of the main text:

We now try to find an expression for the probability that two partial sweeps overlap. First, we try
to estimate the time it takes for one partial sweep to complete. While we could not solve the
differential equations of the main text analytically, we can give an approximate expression for the
time dependent frequency x during the partial sweep:

where β is a function of s and ν and x0 = x(t = 0). This is simply the expression of a logistic growth
starting at x0, and saturating at β. From there, we compute the time Tr(s) it takes a partial sweep of
initial fitness s to reach a frequency rβ with x0β−1 < r < 1. We quickly find

We now consider that two consecutive partial sweeps of initial fitnesses s1 and s2 overlap if the
first one is not yet at frequency rβ1 while the second one is already at (1 − r)β2. In the figure of the
main text, we use r = 3/4: an overlap occurs if the first sweep is not yet at 3/4 of its final value
while the second one is already at 1/4 of its final value. Thus, for an overlap to occur, we need the
time τ between the two partial sweeps to be smaller than Tr(s1) − T1-r(s2). For sweeps happening at
rate σ, this has probability 1 − exp (−σ(Tr(s1 − T1−r(s2))). Since the two sweeps have random initial
fitness effects, we find that the overall probability for two consecutive sweeps to overlap is

This integrates over all possible pairs of sweep amplitudes (or initial fitnesses) and weighs them by
the probability that the time between the two leads to an overlap. It is this quantity (computed
numerically) that is used for the scale of the colorbar in panel E of Figure 4      of the main text.

3. Distribution of partial sweep size β
This section discusses the distribution of the size of partial sweeps β in the context of Equation
11      of the main text as well as the choice of parameters for panel E of Figure 4     .

A first interesting case is when fitness effects are exponentially distributed, with parameter s0:

https://doi.org/10.7554/eLife.97350.2
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This is the distribution we use in most of the population simulations. We compute the
corresponding distribution of β in a straightforward way:

Taking the derivative with respect to x, we obtain

This distribution can accomodate various shape: for ν/s0 > 1 it peaks at 0, and for ν/s0 < 1 it peaks
at 1. We can also compute the following formular for the moments of β:

When investigating the coalescence time in the main text, we use a different distribution for
fitness effects. In this case, we want a finer control over the second moment of β, and we decide to
sample β directly using a Beta distribution. The Beta distribution has a support over [0,1] and can
accomodate many different shapes. It is defined by two parameters a and b:

In our case, it is more practical to parametrize it by its mean m and variance v. For given m and v <
m(l − m) we have

In the case of panel E of Figure 4      and in order to explore a wide range of distributions, we used
three values of m: {0.3, 0.6, 0.9}, and for each m

a low variance v = ε · m2 with ε = 10−5

a high variance v = m(1 − m)/3

For a given set of parameters defining a Beta distribution, we decide on the fitness effects by first
sampling a β for each new adaptive mutation, and then computing s by using Equation 12      from
the main text. For each distribution Pβ, the simulation is performed for 6 values of ρ ∈ [0.003, 0.01,
0.018, 0.032, 0.056, 0.1].

4. Random walk: monotonous trajectories
Here we compute the probability that in the random walk defined in the main text, a trajectory
starting at x0 converges straight to 0 without ever taking a step up. While going to 0 requires an
infinite amount of downward steps, the probability is still finite since the steps are increasingly
likely to go down. For simplicity, we compute this for a fixed β.

https://doi.org/10.7554/eLife.97350.2
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If the random walk always goes down, its position at time step t will be xt = (1 − β)tx0. Since the
probability of going down is 1 − xt, the probability of always going down is

We simplify this expression by taking the logarithm and assuming that (1 − β)t ≪ 1 for t ≥ 1:

Since the random walk is invariant by the change x − 1 − x, we can easily compute the probability
of a trajectory always going up, and thus of a monotonous trajectory going straight to either
boundary 0 or 1.

The quality of the approximation is quite good, as can be seen from Figure S4     . The same figure
also shows that this probability is relatively high, even for x0 far from either boundary.

5. Coalescent
Consider a partial sweep happening between generations t and t + 1, with probability ρ. One
individual A in generation t will then have βN children in generation t + 1. Any individual in
generation t + 1 has a probability β of having A as a direct ancestor, and a probability 1 − β of the
opposite. If we consider n lineages at generation t + 1 and look backward in time, the probability
that at least k out of n have A as an ancestor is βk. Averaging over Pβ, we find the probability of k
specificlineages to have a common ancestor in the previous generation:

Another useful quantity is the probability γn(k) that given n lineages, a particular set of exactly k
lineages merge one generation back. If a partial sweep of known amplitude β took place, this
requires the set of k lineages to merge at this generation, with probability βk, and that the other n
− k do not merge, with probability (1 − β)n−k.

This turns out to be the definition of the Λ-coalescent with Λ(β) ∝ β2P(β) [29     , 30     ]. The A-
coalescent is a general model for genealogies of multiple mergers. We mention two interesting
subcases:

if P(β) = δ(β) where 5 is the Dirac distribution with all of the mass at 0, the only possible
merge is k = 2 and we recover the Kingman coalescent [30     ]. For this reason, we expect
our coalescent to approach Kingman’s when β ≪ 1, which will be shown explicitly below.
if Λ(β) is uniform in [0,1], meaning P(β) ∝ β−2, we obtain the Bolthausen-Sznitman
coalescent [30     , 41     ], which is used to describe the genealogy of populations under
strong selection [41     –43     ].

Finally, we derive a few more properties of the partial sweep coalescent and show the explicit link
to Kingman’s when β ≪ 1. Using the γn(k)’s, we can compute the times Tn: the time during which
exactly n lineages are present in parallel in the genealogy. If there are n lineages present, any

https://doi.org/10.7554/eLife.97350.2
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Figure S 4.

Probability of a strictly monotonous trajectory in the random walk of the main text, as a function of β (fixed) and the initial
value x0. The “exact” solution is obtained by numerically computing the product in Equation B1      up to t = 100.

https://doi.org/10.7554/eLife.97350.2
https://doi.org/10.7554/eLife.97350.2


Pierre Barrat-Charlaix et al., 2024 eLife. https://doi.org/10.7554/eLife.97350.2 38 of 56

coalescence will lower the number of lineages below n. The time Tn is thus exponentially
distributed with rate ν/(n), where ν/(n) is the total rate of coalescence given n lineages:

Since we have , we finally obtain

With n〈β〉 ≪ 1, we now exactly recover the Kingman coalescent. For simplicity, we assume a
constant β and expand Tn up to the second order in nβ, to obtain

These are the times expected for the Kingman coalescent with population size Ne = 1/ρβ2.

In the high n limit, we also obtain Tn → ρ−1, since quantities of the type (1 − β)n vanish. This is
expected as coalescences only take place when a partial sweep happens, with rate ρ. It is another
qualitative difference with the Kingman coalescent: since Tn ≥ ρ−1 for all n, one must wait a time
~ρ−1 to observe the first coalescence even in large trees. The shortest branches will thus always be
of order ρ−1. In contrast, in the Kingman process, the shortest branches vanish when the number
of lineages n increases. This difference is clearly visible when looking at terminal branches of
trees in Figure S6     .

C. Supplementary figures

https://doi.org/10.7554/eLife.97350.2
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Figure S 5.

Average coalescence times 〈Tn〉 for a partial sweep coalescent with effective population size Ne and a Kingman coalescent
with population size Ne. For simplicity, a constant β is used: Left: a high value β = 0.25; Right: a low value β = 0.05. For low β,
the two coalescent processes are very similar until a high n. They considerably differ if β is larger. Note that for the partial
sweep process, Tn never goes below ρ−1.

Figure S 6.

Realisations of different coalescence processes for 30 lineages (leaves). Left: Partial sweep coalescent, with constant β = 0.4
and ρ = 0.00625 such that Ne = (ρβ2)−1 = 1000. Right: Kingman coalescent with population size N = Ne = 1 000.
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Figure S 7.

Example of mutation frequency trajectories that are increasing up to a frequency of 0.5 for H3N2/HA influenza and the
expiring fitness model. For the latter, parameters used are α = s0 = 0.03 and three values of ρ to illustrate different clonal
interference regimes. In each case, 10 randomly selected trajectories are plotted, with blue color indicating final loss and red
final fixation.
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Senior Editor
Aleksandra Walczak
École Normale Supérieure - PSL, Paris, France

Reviewer #1 (Public review):

In this work, the authors study the dynamics of fast-adapting pathogens under immune
pressure in a host population with prior immunity. In an immunologically diverse
population, an antigenically escaping variant can perform a partial sweep, as opposed to a
sweep in a homogeneous population. In a certain parameter regime, the frequency dynamics
can be mapped onto a random walk with zero mean, which is reminiscent of neutral
dynamics, albeit with differences in higher order moments. Next, they develop a simplified
effective model of time dependent selection with expiring fitness advantage, and posit that
the resulting partial sweep dynamics could explain the behaviour of influenza trajectories
empirically found in earlier work (Barrat-Charlaix et al. Molecular Biology and Evolution,
2021). Finally, the authors put forward an interesting hypothesis: the mode of evolution is
connected to the age of a lineage since ingression into the human population. A mode of
meandering frequency trajectories and delayed fixation has indeed been observed in one of
the long-established subtypes of human influenza, albeit so far only over a limited period
from 2013 to 2020. The paper is overall interesting and well-written.

In the revised version, the authors have addressed questions on the role of clonal
interference by new simulations in the SI, clarified the connection between the SIR model
and vanishing-fitness models, and placed their analysis into the broader context of consumer
resource dynamics.

However, the general conclusion, as stated in the abstract, that variant trajectories become
unpredictable as a consequence of the SIR dynamics remains somewhat misleading. Two
aspects contribute to this problem. (1) The empirical observation of `̀quasi-neutrality', i.e. the
absence of a net frequency increase inferred as an average of many trajectories at
intermediate frequencies, does not imply that individual trajectories are neutral (i.e., fully
stochastic and unpredictable) over the time span of observation. Rather, it just says that some
have a positive and some have a negative selection coefficient over that time span. (2) As
stated by the authors, the observation of average quasi-neutrality is indeed incompatible with
the travelling wave model, where initially successful new variants are assumed to retain a
fixed, positive selection coefficient from origination to fixation. This observation also limits
predictions by extrapolation, where a positive selection coefficient inferred at small
frequency is assumed to remain the same at later times and higher frequencies. However,
predictions derived from Gog and Grenfell's multi-strain SIR model, as used by several
authors, do not make the assumption of fixed selection coefficients and incorporate
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trajectory-specific, time-dependent expiration effects into their model predictions. This
distinction remains blurred throughout the text of the paper.

https://doi.org/10.7554/eLife.97350.2.sa2

Reviewer #3 (Public review):

In this work the authors present a multi-strain SIR model in which viruses circulate in a
heterogeneous population with different groups characterized by different cross-immunity
structures. They reformulate the qualitative features of these SIR dynamics as a random walk
characterized by new variants saturating at intermediate frequencies. Then they recast their
microscopic description to an effective formalism in which viral strains lose fitness
independently from one another. They study several features of this process numerically and
analytically, such as the average variants frequency, the probability of fixation, and the
coalescent time. They compare qualitatively the dynamics of this model to variants dynamics
in RNA viruses such as flu and SARS-CoV-2

The idea that vanishing fitness mechanisms that produce partial sweeps may explain
important features of flu evolution is very interesting. Its simplicity and potential generality
make it a powerful framework. As noted by the authors, this may have important
implications for predictability of virus evolution and such a framework may be beneficial
when trying to build predictive models for vaccine design. The vanishing fitness model is well
analyzed and produces interesting structures in the strains coalescent. Even though the
comparison with data is largely qualitative, this formalism would be helpful when
developing more accurate microscopic ingredients that could reproduce viral dynamics
quantitatively.
This general framework has the potential to be more universal than human RNA viruses, in
situations where invading mutants would saturate at intermediate frequencies.

The qualitative connection between the coarse-grained features of these vanishing fitness
dynamics and structured SIR processes offers additional intuition relevant to host-pathogens
interactions, although as noted by the authors other ecological processes could drive similar
evolutionary patterns. The additions in the revised manuscript, substantiating more
thoroughly the connection between the SIR and the vanishing fitness description, are
important to better appreciate the scope of the work.

https://doi.org/10.7554/eLife.97350.2.sa1

Author response:

The following is the authors’ response to the original reviews.

Response to reviewers

We thank the Editor and the Reviewers for their constructure review. In the light of this
feedback, we have made a number of changes and additions to the manuscript, that we think
improved the presentation and hopefully address the majority of the concerns by the
reviewers.

Main changes:

• We added a new SI section (B1) with a population dynamics simulation in the high clonal
interference regime and without expiring fitness (see R1: (1)).

https://doi.org/10.7554/eLife.97350.2
https://doi.org/10.7554/eLife.97350.2.sa2
https://doi.org/10.7554/eLife.97350.2.sa1
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• We added a new SI section (A9) with the derivation of the equilibrium state of our SIR model
in the case of 𝑀 immune groups and in the limit 𝜀 → 0 (see R1: (5)).

• The text of the section Abstraction as “expiring” fitness advantage has been modified.

• We added a new SI section (A4) describing the links between parameters of the “expiring
fitness” and SIR models.

All three reviewers had concerns about the relation between our SIR model and the “expiring
fitness” model, that we hope will be addressed by the last two items listed above. In
particular, we would like to underline the following points:

• The goal of our SIR model is to give a mechanistic explanation of partial sweeps using
traditional epidemiological models. While ecological models (e.g. consumer resource) can
give rise to the same phenomenology, we believe that in the context of host-pathogen
interaction it is relevant to explicitely show that SIR models can result in partial sweeps.

• The expiring fitness model is mainly an effective model: it reproduces some qualitative
features of the SIR but does not quantitatively match all aspects of the frequency dynamics in
SIR models.

• It is possible to link the parameters of the SIR (𝛼,𝛾,𝑏,𝑓) and expiring fitness (𝑠,𝑥,𝜈) models at
the beginning of the invasion of the variant (new SI section A4). However, the two models
also differ in significant ways (the SIR model can for example oscillate, while the effective
model can not). The correspondence of quantities like the initial invasion rate and the
‘expiration rate’ of fitness effects is thus only expected to hold for some time after the
emergence of a novel variant.

Public reviews:

Reviewer 1:

Summary In this work, the authors study the dynamics of fast-adapting pathogens under
immune pressure in a host population with prior immunity. In an immunologically
diverse population, an antigenically escaping variant can perform a partial sweep, as
opposed to a sweep in a homogeneous population. In a certain parameter regime, the
frequency dynamics can be mapped onto a random walk with zero mean, which is
reminiscent of neutral dynamics, albeit with differences in higher order moments. Next,
they develop a simplified effective model of time dependent selection with expiring fitness
advantage, and posit that the resulting partial sweep dynamics could explain the
behaviour of influenza trajectories empirically found in earlier work (Barrat-Charlaix et
al. Molecular Biology and Evolution, 2021). Finally, the authors put forward an
interesting hypothesis: the mode of evolution is connected to the age of a lineage since
ingression into the human population. A mode of meandering frequency trajectories and
delayed fixation has indeed been observed in one of the long-established subtypes of
human influenza, albeit so far only over a limited period from 2013 to 2020. The paper is
overall interesting and well-written. Some aspects, detailed below, are not yet fully
convincing and should be treated in a substantial revision.

We thank the reviewer for their constructive criticism. The deep split in the A/H3N2 HA
segment from 2013 to 2020 is indeed the one of the more striking examples of such
meandering frequency dynamics in otherwise rapidly adapting populations. But the up and
down of H1N1pdm clade 5a.2a.1 in recent years might be a more recent example. We argue
that such meandering dynamics might be a common contributor to seasonal influenza
dynamics, even if it only spans 3-6 years.

https://doi.org/10.7554/eLife.97350.2
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(1) The quasi-neutral behaviour of amino acid changes above a certain frequency
(reported in Fig, 3), which is the main overlap between influenza data and the authors’
model, is not a specific property of that model. Rather, it is a generic property of
travelling wave models and more broadly, of evolution under clonal interference (Rice et
al. Genetics 2015, Schiffels et al. Genetics 2011). The authors should discuss in more
detail the relation to this broader class of models with emergent neutrality. Moreover,
the authors’ simulations of the model dynamics are performed up to the onset of clonal
interference 𝜌/ 𝑠0 = 1 (see Fig. 4). Additional simulations more deeply in the regime of
clonal interference (e.g. 𝜌/ 𝑠0 = 5) show more clearly the behaviour in this regime.

We agree with the reviewer that we did not discuss in detail the effects of clonal interference
on quasi-neutrality and predictability. As suggested, we conducted additional simulations of
our population model in the regime of high clonal interference (𝜌/ 𝑠0 ≫ 1) and without
expiring fitness effects. The results are shown in a new section of the supplementary
information. These simulations show, as expected, that increasing clonal interference tends to
decrease predictability: the fixation probability of an adaptive mutation found at frequency 𝑥
moves closer to 𝑥 as 𝜌 increases. However, even in a case of strong interference 𝜌/ 𝑠0 = 32, 𝑝fix
remains significantly different from the neutral expectation. We conclude from this that
while it is true that dynamics tend to quasi-neutrality in the case of strong interference, this
effect alone is unlikely to explain observations of H3N2 influenza dynamics. In our previous
publication (BarratCharlaix et al, MBE, 2021) we have also investigated the effect of epistatic
interactions between mutations, along side strong clonal interference. We concluded that,
while most of these processes make evolution less predictable and push 𝑝fix towards the
diagonal, it is hard to reproduce the empirical observations with realistic parameters. The
“expiring fitness” model, however, produces this quite readily.

But there are qualitative differences between quasi-neutrality in traveling wave models and
the expiring fitness model. In the traveling wave, a genotype carrying an adaptive mutation is
always fitter than if it didn’t carry the mutation. Quasi-neutrality emerges from the
accumulation of fitness variation at other loci and the fact that the coalescence time is not
much bigger than the inverse selection coefficient of the mutation. In the expiring fitness
model, the selective effect of the mutation itself goes away with time. We now discuss the
literature on quasi-neutrality and cite Rice et al. 2015 and Schiffels et al. 2011.

In this context, I also note that the modelling results of this paper, in particular the
stalling of frequency increase and the decrease in the number of fixations, are very
similar to established results obtained from similar dynamical assumptions in the
broader context of consumer resource models; see, e.g., Good et al. PNAS 2018. The
authors should place their model in this broader context.

We thank the reviewer for pointing out the link between consumer resource models and our
work. We further strengthened our discussion of the similarity of the phenomenology to
models typically used in ecology and made an effort to highlight the link between consumer-
resource models and ours in the introduction and in the part on the SIR model.

(2) The main conceptual problem of this paper is the inference of generic non-
predictability from the quasi-neutral behaviour of influenza changes. There is no
question that new mutations limit the range of predictions, this problem being most
important in lineages with diverse immune groups such as influenza A(H3N2). However,
inferring generic non-predictability from quasi-neutrality is logically problematic
because predictability refers to individual trajectories, while quasi-neutrality is a property
obtained by averaging over many trajectories (Fig. 3). Given an SIR dynamical model for
trajectories, as employed here and elsewhere in the literature, the up and down of

https://doi.org/10.7554/eLife.97350.2
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individual trajectories may be predictable for a while even though allele frequencies do
not increase on average. The authors should discuss this point more carefully.

We agree with the reviewer that the deterministic SIR model is of course predictable.
Similarly, a partial sweep is predictable. But we argue that expiring fitness makes evolution
less predictable in two ways: (i) When a new adaptive mutation emerges and rises in
frequency, we typically don’t know how rapidly its fitness effect is ‘expiring’. Thus even if we
can measure its instantaneous growth rate accurately, we can’t predict its fate far into the
future. (ii) Compared to the situation where fitness effects are not expiring, time to fixation is
longer and there are more opportunities for novel mutations to emergence and change the
course of the trajectory. We have tried to make this point clearer in the manuscript.

(3) To analyze predictability and population dynamics (section 5), the authors use a
Wright-Fisher model with expiring fitness dynamics. While here the two sources of the
emerging neutrality are easily tuneable (expiring fitness and clonal interference), the
connection of this model to the SIR model needs to be substantiated: what is the starting
selection 𝑠0 as a function of the SIR parameters (𝑓,𝑏,𝑀,𝜀), the selection decay 𝜈 =
𝜈(𝑓,𝑏,𝑀,𝜀,𝛾)? This would enable the comparison of the partial sweep timing in both models
and corroborate the mapping of the SIR onto the simplified W-F model. In addition, the
authors’ point would be strengthened if the SIR partial sweeps in Fig.1 and Fig.2 were
obtained for a combination of parameters that results in a realistic timescale of partial
sweeps.

We added a new section to the SI (A4) that relates the parameters of the SIR and expiring
fitness models. In particular, we compute the initial growth rate 𝑠0 and a proxy for the fitness
expiry rate 𝜈 as a function of the SIR parameters 𝛼,𝛾,𝑓,𝑏,𝑀, at the instant where the variant is
introduced. The initial growth rate depends primarily on the degree of immune escape 𝑓,
while the expiration rate 𝜈 is related to incidence 𝐼wt + 𝐼𝑚. However, as both models have
fundamentally different dynamics, these relations are only valid on time scales shorter than
potential oscillations of the SIR model. Beyond that, the connection between the models is
mostly qualitative: both rely on the fact that growth rate of a strain diminishes when the
strain becomes more frequent, and give rise to partial sweeps.

In Figure 1, the time it takes a partial sweep to finish is roughly 100− 200 generations (bottom
right panel). If we consider H3N2 influenza and take one generation to be one week, this
corresponds to a sweep time of 2 to 4 years, which is slightly slower but roughly in line with
observations for selective sweeps. This time is harder to define if oscillatory dynamics takes
place (middle right panel), but the time from the introduction of the mutant to the peak
frequency is again of about 4 years. The other parameters of the model correspond to a
waning time of 200 weeks and immune escape on the order of 20-30% change in
susceptibility.

Reviewer 2:

Summary

This work addresses a puzzling finding in the viral forecasting literature: high-frequency
viral variants evince signatures of neutral dynamics, despite strong evidence for adaptive
antigenic evolution. The authors explicitly model interactions between the dynamics of
viral adaptations and of the environment of host immune memory, making a solid
theoretical and simulation-based case for the essential role of host-pathogen eco-
evolutionary dynamics. While the work does not directly address improved data-driven
viral forecasting, it makes a valuable conceptual contribution to the key dynamical
ingredients (and perhaps intrinsic limitations) of such efforts.

https://doi.org/10.7554/eLife.97350.2
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Strengths

This paper follows up on previous work from these authors and others concerning the
problem of predicting future viral variant frequency from variant trajectory (or
phylogenetic tree) data, and a model of evolving fitness. This is a problem of high
impact: if such predictions are reliable, they empower vaccine design and immunization
strategies. A key feature of this previous work is a “traveling fitness wave” picture, in
which absolute fitnesses of genotypes degrade at a fixed rate due to an advancing
external field, or “degradation of the environment”. The authors have contributed to
these modeling efforts, as well as to work that critically evaluates fitness prediction
(references 11 and 12). A key point of that prior work was the finding that fitness metrics
performed no better than a baseline neutral model estimate (Hamming distance to a
consensus nucleotide sequence). Indeed, the apparent good performance of their well-
adopted “local branching index” (LBI) was found to be an artifact of its tendency to
function as a proxy for the neutral predictor. A commendable strength of this line of
work is the scrutiny and critique the authors apply to their own previous projects. The
current manuscript follows with a theory and simulation treatment of model
elaborations that may explain previous difficulties, as well as point to the intrinsic
hardness of the viral forecasting inference problem.

This work abandons the mathematical expedience of traveling fitness waves in favor of
explicitly coupled eco-evolutionary dynamics. The authors develop a multi-compartment
susceptible/infected model of the host population, with variant cross-immunity
parameters, immune waning, and infectious contact among compartments, alongside
the viral growth dynamics. Studying the invasion of adaptive variants in this setting, they
discover dynamics that differ qualitatively from the fitness wave setting: instead of a
succession of adaptive fixations, invading variants have a characteristic “expiring
fitness”: as the immune memories of the host population reconfigure in response to an
adaptive variant, the fitness advantage transitions to quasi-neutral behavior. Although
their minimal model is not designed for inference, the authors have shown how an
elaboration of host immunity dynamics can reproduce a transition to neutral dynamics.
This is a valuable contribution that clarifies previously puzzling findings and may
facilitate future elaborations for fitness inference methods.

The authors provide open access to their modeling and simulation code, facilitating
future applications of their ideas or critiques of their conclusions.

We thank the reviewer for their summary, assessement, and constructive critique.

(1) The current modeling work does not make direct contact with data. I was hoping to
see a more direct application of the model to a data-driven prediction problem. In the
end, although the results are compelling as is, this disconnect leaves me wondering if the
proposed model captures the phenomena in detail, beyond the qualitative
phenomenology of expiring fitness. I would imagine that some data is available about
cross-immunity between strains of influenza and sarscov2, so hopefully some validation
of these mechanisms would be possible.

We agree with the reviewer that quantitatively confronting our model with data would be
very interesting. Unfortunately, most available serological data for influenza and SARS-CoV-2
is obtained using post-infection sera from previoulsy naive animal models. To test our model,
we would require human serology data, ideally demographically resolved, and a way to link
serology to transmission dynamics. Furthermore, our model is mostly an explanation for
qualitative features of variant dynamics and their apparent lack of predictability. We
therefore considered that quantitative validation using data is out of scope of this work.

https://doi.org/10.7554/eLife.97350.2
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(2) After developing the SIR model, the authors introduce an effective “expiring fitness”
model that avoids the oscillatory behavior of the SIR model. I hoped this could be
motivated more directly, perhaps as a limit of the SIR model with many immune groups.
As is, the expiring fitness model seems to lose the eco-evolutionary interpretability of the
SIR model, retreating to a more phenomenological approach. In particular, it’s not clear
how the fitness decay parameter 𝜈 and the initial fitness advantage 𝑠0 relate to the key
ecological parameters: the strain cross-immunity and immune group interaction
matrices.

The expiring fitness model emerges as a limiting case, at least qualitatively, of the SIR model
when growth rate of the new variant is small compared to the waning rate and the SIR model
does not oscillate. This can be readily achieved by many immune groups, which reconciles
the large effect of many escape mutations and the lack of oscillation by confining the escape
to some fraction of the population. Beyond that, the expiring fitness model is mainly an
effective model that allows us to study the consequences of partial sweeps on predictability
on long timescales. As stated in the “Main changes” section at the start of this reply, we added
an SI section which links parameters of the two models. However, we underline the fact that
beyond the phenomenon of partial sweeps, the dynamics of the two are different.

Reviewer 3:

Summary

In this work the authors start presenting a multi-strain SIR model in which viruses
circulate in an heterogeneous population with different groups characterized by
different cross-immunity structures. They argue that this model can be reformulated as a
random walk characterized by new variants saturating at intermediate frequencies. Then
they recast their microscopic description to an effective formalism in which viral strains
lose fitness independently from one another. They study several features of this process
numerically and analytically, such as the average variants frequency, the probability of
fixation, and the coalescent time. They compare qualitatively the dynamics of this model
to variants dynamics in RNA viruses such as flu and SARS-CoV-2.

Strengths

The idea that a vanishing fitness mechanisms that produce partial sweeps may explain
important features of flu evolution is very interesting. Its simplicity and potential
generality make it a powerful framework. As noted by the authors, this may have
important implications for predictability of virus evolution and such a framework may be
beneficial when trying to build predictive models for vaccine design. The vanishing fitness
model is well analyzed and produces interesting structures in the strains coalescent. Even
though the comparison with data is largely qualitative, this formalism would be helpful
when developing more accurate microscopic ingredients that could reproduce viral
dynamics quantitatively. This general framework has a potential to be more universal
than human RNA viruses, in situations where invading mutants would saturate at
intermediate frequencies.

We thank the reviewer for their positive remarks and constructive criticism below.

Weaknesses

The authors build the narrative around a multi-strain SIR model in which viruses
circulate in an heterogeneous population, but the connection of this model to the rest of
the paper is not well supported by the analysis. When presenting the random walk
coarse-grained description in section 3 of the Results, there is no quantitative relation
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between the random walk ingredients importantly 𝑃(𝛽) - and the SIR model, just a
qualitative reasoning that strains would initially grow exponentially and saturate at
intermediate frequencies. So essentially any other microscopic description with these two
features would give rise to the same random walk.

As also highlighted in the response to other reviewers, we now discuss how the parameter of
the SIR model are related to the initial growth rate and the ‘expiration’ rate of the effective
model. While the phenomenology of the SIR model is of course richer, this correspondence
describes its overdamped limit qualitatively well.

Currently it’s unclear whether the specific choices for population heterogeneity and cross-
immunity structure in the SIR model matter for the main results of the paper. In section
2, it seems that the main effect of these ingredients are reduced oscillations in variants
frequencies and a rescaled initial growth rate. But ultimately a homogeneous population
would also produce steady state coexistence between strains, and oscillation amplitude
likely depends on parameters choices. Thus a homogeneous population may lead to a
similar coarse-grained random walk.

The reviewer is correct that the primary effects of using many immune groups is to slow
down the increase of novel variant, which in turn dampens the oscillations. Having multiple
immune groups widens the parameter space in which partial sweeps without dramatic
oscillations are observed. For slow sweeps, similar dymamics are observed in a homogeneous
population.

Similarly, it’s unclear how the SIR model relates to the vanishing fitness framework, other
than on a qualitative level given by the fact that both descriptions produce variants
saturating at intermediate frequencies. Other microscopic ingredients may lead to a
similar description, yet with quantitative differences.

Both of these points were also raised by other reviewers and we agree that it is worth
discussing them at greater length. We now discuss how the parameters of the ‘expiring
fitness’ model relate to those of the SIR. We also discuss how other models such as ecological
models give rise to similar coarse grained models.

At the same time, from the current analysis the reader cannot appreciate the impact of
such a mean field approximation where strains lose fitness independently from one
another, and under what conditions such assumption may be valid.

In the SIR model, the rate at which strains lose fitness does depend on the precise state of the
host population through the quantities 𝑆𝑚 and 𝑆wt , which is apparent in equation (A27) of
the new SI section. The fact that a new variant shifts the equilibrium frequencies of previous
strains in a proportional way is valid if the “antigenic space” is of very high dimensions, as
explained in section Change in frequency when adding subsequent strains of the SI. It would
indeed be interesting to explore relaxations of this assumption by considering a larger class
of cross immunity matrices 𝐾. However, in the expiring fitness model, the fact that strains
lose fitness independently from each ohter is a necessary simplification.

In summary, the central and most thoroughly supported results in this paper refer to a
vanishing fitness model for human RNA viruses. The current narrative, built around the
SIR model as a general work on host-pathogen eco-evolution in the abstract,
introduction, discussion and even title, does not seem to match the key results and may
mislead readers. The SIR description rather seems one of the several possible models,
featuring a negative frequency dependent selection, that would produce coarse-grained
dynamics qualitatively similar to the vanishing fitness description analyzed here.
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We have revised the text throughout to make the connections between the different parts of
the manuscript, in particular the SIR model and the expiring fitness model, clearer. We agree
that the phenomenology of the expiring fitness model is more general than the case of human
RNA viruses described by the SIR model, but we think this generality is an attractive feature
of the coarse-graining, not a shortcoming. Indeed, other settings with negative frequency
dependent selection or eco-systems that adapt on appropriate time scale generate similar
dynamics.

Recommendations for the authors:

Reviewer 1:

(4) Line 74: what does fitness mean?

Many population dynamics models, including ones used for viral forecasting, attach a scalar
fitness to each strain. The growth rate of each strain is then computed by substracting the
average population fitness to the strain’s fitness. In this sentence, fitness is intended in this
way.

(5) Fig. 1: The equilibrium frequency in the middle and bottom rows is hardly smaller
than the equilibrium frequency in the top row for one immune group. This is surprising
since for M=10, the variant escapes in only 1/10th of the population, which naively
should impact the equilibrium frequency more strongly. Could the authors comment on
this?

This is indeed non-trivial, and a hand-waving argument can be made by considering the
extreme case 𝜀 = 0. The variant is then completely neutral for the immune groups 𝑖 > 1, and
would be at equilibrium at any frequency in these immune groups. Its equilibrium frequency
is then only determined by group 1, which is the only one breaking degeneracy. For 𝜀 > 0 but
small, we naturally expect a small deviation from the 𝜀 = 0 case and thus 𝛽 should only change
slightly.

A more rigorous argument with a mathematical proof in the case 𝜀 = 0 is now given in section
A4 of the supplementary information.

(6) Fig. 1: In the caption, it is stated that the simulations are performed with 𝜀 = 0.99. Is
this a typo? It seems that it should be 𝜀 = 0.01, as in and just below equation (7).

This was indeed a typo. It is now fixed.

(7) Fig. 3: The data analysis should be improved. In order to link the average frequency
trajectories to standard population genetics of conditional fixation probabilities, the
focal time should always be the time where the trajectory crosses the threshold
frequency for the first time. Plotting some trajectories from a later time onwards, on their
downward path destined to loss, introduces a systematic bias towards negative clonal
interference (for these trajectories, the time between the first and the second crossing of
the threshold frequency is simply omitted). The focal time of first crossing of the
threshold frequency can easily be obtained, e.g., by linear interpolation of the trajectory
between subsequent time points of frequency evalution. In light of the modified
procedure, the statements on the on the inertia of the trajectories after crossing 𝑥⋆ (line
356) should be re-examined.

The way we process the data is already in line with the suggestions of the reviewer. In
particular, we use as focal time the first time at which a trajectory is found in the threshold
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frequency bin. Trajectories that are never seen in the bin because of limited time-resolution
are simply ignored.

In Fig. 3, there are no trajectories that are on their downward path at the focal time and
when crossing the threshold frequency. Our other work on predictability of flu Barrat-
Charlaix et. al. (2021) has a similar figure, which maybe created confusion.

(8) Fig. 4: authors write 𝛼/ 𝑠0 in the figure, but should be 𝜈/ 𝑠0.

Fixed.

(9) Line 420: authors refer to the blue curve in panel B as the case with strong
interference. However, strong interference is for higher 𝜌/ 𝑠0, that is panel D (see point 1).

Fixed.

(10) Line 477: typo “there will a variety of mutations”.

Fixed.

Reviewer 2:

Should 𝛼 be 𝜈 in Figure 4 legends?

Thank you very much for spotting this error. We fixed it.

Equations 4-5 could be further simplified.

We factorised the 𝐼 term in equation 4. In equation 5, we prefered to keep the 1− 𝛿/ 𝛼 term as
this quantity appears in different calculations concerning the model. For instance, 𝑆 = 𝛿/ 𝛼 at
equilibrium.

The sentence before equation 8 references 𝑃𝛽(𝛽), but this wasn’t previously introduced.

We now introduce 𝑃𝑏𝜂 at the beginning of the section Ultimate fate of the variant.

In the last paragraph of page 12, “monotonously” maybe should be “monotonically”.

Fixed.

For the supplement section B, you might want a more descriptive title than “other”.

We renamed this section to Expiring fitness model and random walk.

Reviewer 3:

To expand on my previous comments, my main concerns regard the connection of
section 2 and the SIR model with the rest of the paper.

In the first paragraph of page 9 the authors argue that a stochastic version of the SIR
model would lead to different fixation dynamics in homogeneous vs heterogeneous
populations due to the oscillations. This paragraph is quite speculative, some numerical
simulations would be necessary to quantitatively address to what extent these two
scenarios actually differ in a stochastic setting, and how that depends on parameters.
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Likewise, the connection between the SIR model, the random walk coarse-grained
description and the vanishing fitness model can be investigated through numerical
simulations of a stochastic SIR given the chosen population and cross-immunity
structures with i.e. 10-20 strains. This would allow for a direct comparison of individual
strain dynamics rather than the frequency averages, as well as other scalar properties
such as higher moments, coalescent, and fixation probability once reaching a given
frequency. It would also be possible to characterize numerically the SIR P(beta) bridging
the gap with the random walk description. It’s not obvious to me that the SIR P(beta)
would not depend on the population size in the presence of birth-death stochasticity,
potentially changing the moments scalings. I appreciate that such simulations may be
computationally expensive, but similar numerical studies have been performed in
previous phylodynamics works so it shouldn’t be out of reach.

An alternative, the authors should consider re-centering the narrative directly on the
random walk of the vanishing fitness model, mentioning the SIR more briefly as a
possible qualitative way to get there. Either way the authors should comment on other
ways in which this coarse-grained dynamics could arise.

In the vanishing fitness model, where variants fitnesses are independent, is an infinite
dimensional antigenic space implicitly assumed? If that’s the case, it should be explained
in the main text.

A long simulation of the SIR model would indeed be interesting, but is numerically
demanding and our current simulation framework doesn’t scale well for many strains and
susceptibilities. We thus refrained from adding extensive simulations.

In Figure 2B of the main text, the simulation with 7 strains illustrates the qualitative match
between the expiring fitness and the SIR model. However, it is clearly not long enough to
discuss statistical properties of the corresponding random walk. Furthermore, we do not
expect the individual strain dynamics of the SIR and expiring fitness models to match. The
latter depends on few parameters (𝛼, 𝑠0), while the former depends on the full state of the
host population and of the previous variants.

In the sectin linking the parameters of the two models, we now discuss the distribution 𝑃(𝛽) of
the SIR model for two strains and a specific choice of distribution for the cross immunity 𝑏
and 𝑓.

Minor comments:

There is some back and forth in the writing. For instance, when introducing the model,
𝐶𝑖𝑗 is first defined as 1/ 𝑀, then a few paragraphs later the authors introduce that in
another limit 𝐶𝑖𝑖 is just much higher than any 𝐶𝑖𝑗, and finally they specify that the former
is the fast mixing scenario.

Another example is in section 2, in the first paragraph they put forward that
heterogeneity and crossimmunity have different impacts on the dynamics, but the
meaning attributed to these different ingredients becomes clear only a while later after
the homogeneous population analysis. Uniforming the writing would make it easier for
the reader to follow the authors’ train of thought.

We removed the paragraph below Equation (1) mentioning the 𝐶𝑖𝑗 = 1/ 𝑀 case, which we hope
will linearize the writing.

When mentioning geographical structure, why would geography affect how immunity
sees pairs of viral strains (differences in 𝐾)?
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Geographic structure could influence cross-immunity because of exposure histories of hosts.
For instance in the case of influenza, different geographical regions do not have the same
dominating strains in each season, and hosts from different regions may thus build up
different immunity.

In the current narrative there are some speculations about non-scalar fitness, especially
in section 2. The heterogeneity in this section does not seem so strong to produce a
disordered landscape that defies the notion of scalar fitness in the same way some
complex ecological systems do. A more parsimonious explanation for the coexistence
dynamics observed here may be a negative frequency dependent selection.

Our language here was not very precise and we agree that the phenomenology we describe is
related to that of frequency dependent selection (mediated by via immunity of the host
population that integrates past frequencies). Traveling wave models typically use fitness
function that are independent of the population distribution and only account for the
evolution via an increasing average fitness. We have made discussion more accurate by
stating that we consider a case where fitness depends explicitly on present and past
population composition, which includes the case of negative frequency dependent selection.

I don’t understand the comparison with genetic drift (typo here, draft) in the last
paragraph of section 3 given that there is no stochasticity in growth death dynamics.

We compare the random walk to genetic drift because of the expression of the second
moment of the step size. The genetic draft has the same functional form. If one defines the
effective population size as in the text, the drift due to random sampling of alleles (neutral
drift) and the changes in strain frequency in our model have the same first and second
moments. The stochasticity here does not come from the dynamics, which are indeed
deterministic, but from the appearance of new mutations (variants) on backgrounds that are
randomly sampled in the population. This latter property is shared with genetic draft.

In the vanishing fitness model, I think the reader would benefit from having 𝑃(𝑠) in the
main text, and it should be made more clear what simulations assume what different
choice of 𝑃(𝑠).

We added the expression of 𝑃(𝑠) in the main text. Simulations use the value 𝑠0 = 0.03, which
we added in the caption of Figure 4.

When comparing the model and data, is the point that COVID is not reproduced due to
clonal interference? It seems from the plot that flu has clonal interference as well though.
Why is that negligible?

A similar point has been raised by the first reviewer (see R1-(1)). Clonal interference is not
negligible, but we find it to be insufficient to explain the observations made for H3N2
influenza, namely the lack of inertia of frequency trajectories or the probability of fixation.
This is shown in the new section (B1) of the SI. Both SARS-CoV-2 and H3N2 influenza
experience clonal interference, but the former is more predictable than the latter. Our point
is that expiring fitness effects should be stronger in influenza because of the higher immune
heterogeneity of the host population, making it less predictable than SARS-CoV-2.

Does the fixation probability as a function of frequency threshold match the flu data for
some parameters sets?
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For H3N2 influenza, the fixation probability is found to be equal to the threshold frequency
(see Barrat-Charlaix MBE 2021, also indirectly visible from Fig. 3). In Figure 4, we obtain that
either a high expiry rate or intermediate expiry rates and clonal interference regimes match
this observation.

It would be instructive to see examples of the individual variant dynamics of the
vanishing fitness model compared to the presented data.

We added an extra SI figure (S7) showing 10 randomly selected trajectories of individual
variants in the case of H3N2/HA influenza and for the expiring fitness model with different
parameter choices.

Figure 4E has no colorbar label. The reader shouldn’t have to look for what that means in
the bottom of the SIs. In panels A and B the label should be 𝜈, not 𝛼. Same thing in most
equations of page 42.

We added the colorbar label to the figure and also updated the caption: a darker color
corresponds to a higher probability of sweeps to overlap. We fixed the 𝜈 – 𝛼 confusion in the
SI and in the caption of the figure.

https://doi.org/10.7554/eLife.97350.2.sa0
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