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Abstract12

Ancestral sequence reconstruction (ASR) is an important tool to understand how protein structure13

and function changed over the course of evolution. It essentially relies on models of sequence14

evolution that can quantitatively describe changes in a sequence over time. Such models usually15

consider that sequence positions evolve independently from each other and neglect epistasis: the16

context-dependence of the effect of mutations. On the other hand, the last years have seen major17

developments in the field of generative protein models, which learn constraints associated with18

structure and function from large ensembles of evolutionarily related proteins. Here, we show that19

it is possible to extend a specific type of generative model to describe the evolution of sequences20

in time while taking epistasis into account. We apply the developed technique to the problem of21

Ancestral Sequence Reconstruction (ASR): given a protein family and its evolutionary tree, we try to22

infer the sequences of extinct ancestors. Using both simulations and data coming from experimental23

evolution we show that our method outperforms state-of-the-art ones. Moreover, it allows for24

sampling a greater diversity of potential ancestors, allowing for a less biased characterization of25

ancestral sequences.26
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I. INTRODUCTION27

Homologous proteins have a common evolutionary origin that can go back to billions28

of years. Throughout their evolution, they diversify through mutations while selection29

preserves their biological function. Consequently, many protein families contain thousands of30

sequences that are highly variable and yet maintain similar structures and functions. On31

the other hand, even a few mutations can destabilize a protein and destroy its function. A32

quantitative description how protein sequences change in time is thus a challenging problem,33

with important consequences for our understanding of the evolution of life.34

Many probabilistic models of protein sequence evolution have been developed. Commonly35

used ones describe the evolution at each sequence position as a Markov chain across amino36

acid states, taking into account average properties of the substitution process such as more37

frequent transitions between similar amino acids [1–3]. Variations in evolutionary speed38

at different sites are often represented by using a set of substitution rates to which sites39

can be assigned, usually coming from a Gamma distribution [4]. An important and widely40

accepted assumption is that sequence positions evolve independently. This has the advantage41

of greatly simplifying sequence evolution models, making them convenient to manipulate42

analytically and computationally manageable. However, it comes at the cost of ignoring43

epistasis, that is the fact that the effect of a mutation depends on the rest of the sequence.44

Sequence evolution models are used in the general field of phylogenetics which explores the45

evolutionary relations between proteins. An notable application is that of ancestral sequence46

reconstruction (ASR): given a set of homologous sequences and their phylogenetic tree, ASR47

consists in inferring likely sequences for the internal nodes of the tree, which correspond48

to extinct ancestral proteins. Reconstructed proteins can then be synthesized and tested49

in the lab. The technique is used to study the sequence-function relationship in proteins,50

for instance by understanding which mutations cause a change in enzymatic activity or51

binding specificity of a protein [5–7]. It can also be used to address fundamental evolutionary52

questions, such as the evolution reaction specificity or thermostability of proteins across the53

tree of life [8, 9].54

The large amount of protein sequence data combined with recent theoretical and com-55

putational work has also allowed the development of generative protein sequence models.56

These models build on the idea that the sequence variability among homologous protein with57
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similar biological functions inform us about the sequence-function relationship. In practice,58

generative models are trained using large amounts of protein sequences and consist of a59

probability distribution P (s) over any potential amino acid sequence, with functional ones60

presumably being more probable. Classes of models include ones inspired from statistical61

physics such as the Potts model [10] and restricted Boltzmann machines [11], or based on62

neural networks such as transformers [12, 13]. A major achievement of these models is the63

possibility of using them to sample new artificial sequences that are distant from any natural64

protein but still functional [14, 15].65

An essential ingredient for the success of generative models is the modeling of epistasis :66

the fact that the effect of a mutation on protein function depends on the rest of the sequence.67

Epistasis is caused by interaction between amino acids, and is essential to describe the fitness68

landscape of a protein [16, 17]. Interestingly, it has also been suggested that epistasis may69

be the cause of variable evolutionary rates across phylogenetic trees [18]. Since common70

sequence evolution models ignore epistasis, they can only represent a crude approximation71

of the evolutionary constraints acting on a protein. As the change of a protein sequence72

in time depends on functional constraints, it is reasonable to expect that an inaccurate73

representation of the fitness landscape negatively affects the modeling of dynamics.74

There has been effort in the phylogenetics community to develop models that take75

epistasis into account. For instance in [19, 20], authors build an evolutionary model based76

on a structure-based fitness landscape. The evolutionary models obtained in this way can be77

used to detect the presence of epistasis and to show that including it leads to better fit of78

the data, but not to infer a phylogenetic tree or to reconstruct the states at internal nodes.79

Other approaches that perform phylogenetic inference under the assumption of co-evolution80

make strong approximations such as the one of non-overlapping pairs of co-evolving sites [21].81

Another promising direction is the use of generative models for phyogenetic tasks. However,82

the non-independence of mutations that characterizes generative models makes it challenging83

to use them for dynamical purposes. Different studies have proposed using Potts models to84

describe evolutionary dynamics, but current techniques allow for little analytical treatment85

and are limited to forward simulation of sequences [22, 23].86

In this study, we set out to extend the application of generative models to describe87

evolutionary dynamics. First, we develop an analytically and numerically tractable sequence88

evolution model with generative properties, based on the so-called ArDCA generative89
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model and its autoregressive architecture [24]. Our model accounts for epistasis and is90

generative over long-term evolution, but also allows use of some of the standard techniques91

used in phylogenetics such as e.g. Felsenstein’s pruning algorithm or an algorithm for92

irreversible models that we use here [25, 26]. We then apply our model to ancestral sequence93

reconstruction (ASR) and demonstrate, using simulated data, that it outperforms state-of-94

the-art reconstruction techniques that assume independent sites, both when maximizing95

or sampling from the posterior. We use the program IQ-TREE [27] to compare to state96

of the art methods, and the list of methods that we use within IQ-TREE is detailed in97

the Methods section. Finally, we validate our approach with recent experimental data on98

directed evolution and show that reconstruction of a known ancestor is done more accurately99

than using a site-independent method. To our knowledge, this is the first use of such data to100

evaluate reconstruction methods.101

II. RESULTS102

A. Autoregressive model of sequence evolution103

Models of evolution commonly used in phylogenetics rely on the assumptions that sequence104

positions evolve independently and that evolution at each position i follows a continuous105

time Markov chain (CTMC) parametrized by a substitution rate matrix Qi. Matrix Qi is106

of dimensions q × q where q = 4 for DNA, 20 for amino acids or 64 for codon models. The107

probability of observing a change from state a to state b during evolutionary time t is then108

given by Pi(b|a, t) =
(
etQ

i
)
ab
.109

If the model is time-reversible, it is a general property of CTMCs that the substitution110

rate matrix can be written as111

Q = H ·Π = H ·


π1 0 0

0
. . . 0

0 0 πq

 , (1)

where H is symmetric with positive off-diagonal elements and Π is diagonal with positive112

entries that sum to 1 [28]. The diagonal elements of H are determined by requiring that the113

rows of Q sum to zero. The two matrices have simple interpretations. On the first hand,114
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Π fixes the long-term equilibrium frequencies, that is Pi(b|a, t) −−−→
t→∞

πb. On the other, H115

influences the dynamics of the Markov chain but does not change the equilibrium distribution.116

Most commonly, both matrices are considered to be independent of the sequence position i,117

and H can potentially be scaled in order to represent different rates of evolutionary change [4].118

119

In order to incorporate constraints coming from a protein’s structure and function into the120

evolutionary model, we develop a protein family specific model of protein sequence evolution121

based on the the autoregressive generative model ArDCA [24]. Autoregressive models à la122

ArDCA build from the the chain rule of conditional probabilities:123

P (a1, . . . , aL) = P (a1)P (a2|a1) . . . P (aL|a1, . . . , aL−1) =
L∏
i=1

P (ai|a<i) (2)

where a<i = a1, . . . , ai−1 represents the amino acid states before position i and L is the length124

of the sequence. By construction, Eq. (2) is an exact decomposition of the joint probability125

distribution of the sequence a1, . . . , aL. There are L! such decompositions of P : for any126

permutation σ of the positions {1, . . . , L}, P (a1, . . . , aL) =
∏L

i=1 P (aσi
|a<σi

) is another exact127

decomposition of P .128

ArDCA models the diversity of sequences in a protein family by proposing a specific129

functional form for conditional probabilities. In other words, the model is defined by L130

functions pi depending on parameters θi with the desired property131

pi(ai|a<i;θi) ≃ P (ai|a<i). (3)

The precise functional form of pi(ai|a<i;θi) is given in the Methods section. The model then132

assigns a probability PAR(a) to any sequence a = {a1, . . . , aL} of L amino acids:133

PAR(a) =
L∏
i=1

pi(ai|a<i;θi), (4)

Note that since the model is trained on aligned sequences, states ai can include the gap134

symbol, which is treated as any other amino acid. Functions pi represent the probability135

according to the model to observe state ai in position i, given that the previous amino acids136

were a1, . . . , ai−1. The set of parameters {θi} is learned by maximum-likelihood using the137

aligned sequences of members of the family. Note that the autoregressive architecture is also138

employed in the context of deep-learning methods, to which the model we describe below139
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could potentially be generalized [13, 29]. Deep autoregressive methods differ from ArDCA in140

that they use a more complex parametrization of pi and are usually trained on large set of141

unaligned proteins rather than a single family.142

As explained above, the decomposition of Eq. 2 is valid for any ordering of the sequence143

positions {1, . . . , L}. Each decomposition will lead to a different set of parameters {θi}144

and thus to a different generative model. The ordering used in ArDCA is not the natural145

{1, . . . , L} but rather an order where positions are sorted by increasing variability, which146

has been shown to give good generative capacities [24]. For simplicity, we keep the notation147

of Eq. 4: the position we call i = 1 is not the first sequence position but rather the most148

conserved one, and so on until i = L which represents the most variable position.149

It has been shown in [24] that the generative capacities of ArDCA are comparable to150

that of state of the art models such as bmDCA [17]. This means that a set of sequences151

sampled from the probability in Eq. 4 is statistically hard to distinguish from the natural152

sequences used in training or, in other words, that the model can be used to sample new153

artificial homologs of a protein family. The generative capacities of a protein model comes154

from its ability to represent epistasis, that is the relation between the effect of a mutation and155

the sequence context in which it occurs. Here, epistasis is modeled through the conditional156

probabilities pi: the distribution of amino acids at position i depends on the states at the157

previous positions {1, . . . i− 1}.158

We take advantage of the autoregressive architecture to define a generative evolutionary159

model. Given two amino acid sequences a and b, we propose that the probability of a160

evolving into b in time t take the form161

P (b|a, t) def≡
L∏
i=1

qi(bi|ai, b<i, t), (5)

where the position specific conditional propagator qi is defined as162

qi(bi|ai, b<i, t) =
(
et·Q

i(b<i)
)
ai,bi

, Qi(b<i) = H ·


pi(1|b<i) 0 0

0
. . . 0

0 0 pi(q|b<i)

 . (6)

According to these equations, evolution for each position i follows a standard CTMC. However,163

we use the decomposition of Eq. 1 to set the equilibrium frequency at i to pi(b|b<i). In other164

words, we consider that position i evolves in the context of b1, . . . , bi−1, and that its dynamics165
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are constrained by its long-term frequency given by the autoregressive model. Compared166

to Eq. 1, matrices H and Π now depend on the position i but also on the context b<i. An167

important consequence of this choice is that our evolutionary model will converge at long168

times to the generative distribution PAR:169

qi(bi|ai, b<i, t) −−−→
t→∞

pi(bi|b<i), P (b|a, t) −−−→
t→∞

PAR(b). (7)

We argue here that such a property is essential to build a realistic protein sequence170

evolution model, particularly when considering evolution over long periods. Note that to171

converge to a generative distribution, accurate modeling of epistasis is required. Using site-172

specific frequencies would not be sufficient, as the effect of mutations in a protein sequence173

typically depends on the context [16]. The technique proposed here allows us to represent174

epistasis through the context-dependent probabilities pi, while still considering each sequence175

position one at a time.176

In the Methods section and in the Supplementary Material , we compute the transition177

rates associated to the propagator of Eq. 5 and show that it can be seen as an approximation178

of dynamics in the fitness landscape defined by PAR. It becomes exact at large times, as179

Eq. 7 points out, and at small times. There are caveats to this approximation: our model180

has a non-reversible dynamic – although the context-dependent site propagators in Eq. 6 are181

reversible – and in fact is not even a Markov process. Using non time-reversible evolutionary182

models is uncommon in the field, but this is mainly due to practical considerations and there183

are no fundamental reasons for evolution itself to be reversible [25]. However, it is definitely184

out of the ordinary to model evolution with a non Markovian process. Another undesired185

consequence is that the generative distribution PAR is not stationary at all times in this186

process. This is in principle worrying, as it means that if dynamics are started from natural187

sequences, sequences generated at intermediate times could be non-functional according to188

the generative model.189

These caveats are, to some extent, the price to pay to model epistasis on long time scales190

– see Eq. 7 – while keeping an analytically tractable model. While definitely undesirable,191

they seem to have limited quantitative consequences: in Figure S1, we show that deviations192

of the dynamics from the equilibrium PAR are quantitatively small. Another argument193

in this direction is the fact that reconstruction depends weakly on the placement of the194

root, indicating that the irreversibility of the model is not too strong (Section B3 of the195
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Supplementary Material ). Furthermore, the results that we present below show that our196

propagator improves ASR in different settings and can thus be seen as a useful approximation.197

A final remark is that, as the ArDCA model itself, the proposed dynamic depends on the198

order in which decomposition Eq. 2 is made. Indeed, a consequence of the autoregressive199

structure of the model is that the first position treated by the model (i = 1) “evolves”200

independently from the context, while the last one depends on all the rest of the sequence.201

In practice, it is difficult to say whether a given ordering better describes biological evolution:202

there is an astronomically large number of permutations L!, and there is no obvious direct203

measure of whether one better fits evolutionary dynamics. For this reason, we make the204

simplifying choice of only considering the ordering by increasing diversity of sites, which has205

been found in [24] to have good generative capacities.206

207

We underline that this approach has important differences with standard models of208

evolution used in phylogenetics. In phylogenetic reconstruction, the tree and the sequence209

evolution model are usually inferred at the same time and from the same data. The number210

of parameters of the evolutionary model is then kept low to reduce the risk of overfitting,211

for instance by using a predetermined set of evolutionary rates to account for variable and212

conserved sites. Methods that introduce more complex models such as site specific frequencies213

do so by jointly inferring the parameters and the tree, leading to computationally intensive214

algorithms [30, 31].215

Here instead, parameters of the generative model in Eq. 4 are learned from a protein216

family, i.e. a set of diverged homologous protein sequences. While it is true that these217

sequences share a common evolutionary history and cannot be considered as independent218

samples, common learning procedures only account for this in a very crude way [10, 24].219

Despite this, it appears that the generative properties of such models are not strongly affected220

by the phylogeny [32, 33]. This allows us to proceed in two steps: first construct the model221

from data while ignoring phylogeny, and then use it for phylogenetic inference tasks.222

An advantage of this approach is that once the model of Eq. 4 is inferred, the propagator223

in Eq. 5 comes “for free” as no additional parameters are required. Importantly, our model224

does not use site specific substitution rates. Indeed, it has been shown that these can be225

seen as emergent properties of more complex models of evolution [18]. However, a constraint226

is that the inference of the generative model requires the existence of an appropriate training227
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set, that is a protein family with sufficient variability among its members.228

B. Ancestral sequence reconstruction229

We apply our evolutionary model to the task of ancestral sequence reconstruction (ASR).230

The goal of ASR is the following: given a set of extant sequences with a shared evolutionary231

history and the corresponding phylogenetic tree, is it possible to reconstruct the sequences of232

extinct ancestors at the internal nodes of the tree? Along with the autoregressive evolutionary233

model described above, we thus need two inputs to perform ASR: a known phylogenetic234

tree, and the multiple sequence alignment of the leaf sequences. The length of the aligned235

sequences has to exactly correspond to that of the autoregressive model.236

The reconstruction with the autoregressive model proceeds as follows.237

(i) For position i = 1, we use the evolutionary model defined by the equilibrium frequencies238

p1 to reconstruct a state an1 at each internal node n of the tree. For i = 1 the transition239

rate matrix Q1 as defined in Eq. 6 depends only on p1, which in turn does not depend240

on the context. For a branch of length t, the transition probabilites between two states241

a and b is q1(b|a, t) =
(
etQ

1
)
ab
.242

(ii) Iterating through subsequent positions i > 1: we reconstruct state ani at each internal243

node n using the model defined in Eq. 6, with the context an<i having been already244

reconstructed in the previous iterations. The procedure is the same as the i = 1 case,245

the only difference being that the transition rate matrix Qi now also depends on the246

context at postions 1, . . . , i− 1.247

It is important to note that when any position i > 1 is reconstructed, the context at different248

internal nodes of the tree may differ. For a branch joining two nodes (n,m) of the tree,249

the evolutionary model will thus differ if we go down or up the branch: in one case the250

context at node n must be used, in the other case the context at node m. This is the cause251

of the time-irreversibility of the model. For this reason, we compute the probability of252

reconstructions using an algorithm adapted to irreversible models [26], described in details253

in Section A of the Supplementary Material .254

Using this technique we obtain, for any internal node n and any alignment position i,255

the posterior probability P (ani |T ,D) of the amino acid state ani given the tree T and the256
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sequences at the leaves D. This probability is computed by marginalizing over other the257

states of other internal nodes. We call maximum a posteriori reconstruction (MAP) the258

state obtained by maximizing P (ani |T ,D). In this case, each iteration reconstructs the most259

probable residue at position i for all internal nodes of the tree. Alternatively, states of internal260

nodes can be sampled from P (ani |T ,D) to obtain a posterior sampling reconstruction. In any261

case, our reconstruction is marginal: the posterior at a node is obtained by marginalizing over262

the states of other nodes. While it is in principle possible to extend it to joint reconstruction,263

as explained in [26], we have not implemented it and do not consider it in this work.264

In any realistic application, the phylogenetic tree has to be reconstructed from the aligned265

sequences. In principle, a consistent approach would use the same evolutionary model for266

tree inference and ASR. However, our model does not allow us to reconstruct the tree.267

Therefore, in any realistic application, the tree is reconstructed using an evolutionary model268

that typically will differ from ours. To reduce issues related to this evolutionary model269

discrepancy, we adopt the following strategy: our ASR method blindly trusts the topology of270

the input tree, but recomputes the branch length using the sequences. As explained in the271

Methods, there is no direct way to optimize branch length with the autoregressive model. For272

simplicity, we use a profile model with position-specific amino acid frequencies for this task.273

This provides a relatively accurate estimate of the branch lengths, as shown in Figure S4.274

A consequence of the irreversibility of the evolutionary model is that the reconstruction275

potentially depends on the placement of the root of the tree. This is not an issue in the276

results that follow since we work with simulated trees for which the root is known exactly.277

However, it may be a concern when applying this to biological datasets. In Section B3 of278

the Supplementary Material , we explore the effect of root placement on the reconstruction.279

Results are overall reassuring, with the difference between reconstructions remaining below a280

Hamming distance of 0.5% even for large errors in root placement.281

C. Results on simulated data282

There are two difficulties when evaluating the capacity of a model to perform ASR. The283

first is that in the case of biological data, the real phylogeny and ancestral sequences are284

usually not known. As a consequence, one must rely on simulated data to measure the285

quality of reconstruction. The second is that the reconstruction of an ancestral sequence is286
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always uncertain, as evolutionary models are typically stochastic. The uncertainty becomes287

higher for nodes that are remote from the leaves. This means that it is only possible to make288

a statistical assessment about the quality of a reconstruction.289

To test our approach, we adopt the following setup. We first generate phylogenetic trees290

by sampling from a coalescent process. We decide to use Yule’s coalescent instead of the291

more common Kingman. The latter tends to produce a large majority of internal nodes292

in close vicinity to the leaves with the others separated by very long branches, resulting293

in a trivial reconstruction for most nodes and a very hard one for the deep nodes. Yule’s294

coalescent generates a more even distribution of internal nodes depths (defined as the distance295

to the closest leaf), allowing us to better evaluate reconstruction quality, see Supplementary296

Material and Figure S5. For each tree, we simulate the evolution of sequences using a model297

that we refer to as “evolver” to obtain two multiple sequence alignments, one for the leaves298

and one for the internal nodes of the tree. We then reconstruct internal nodes using the299

desired approach by using the leaf alignment and the tree topology as input data.300

We will consider two kinds of evolver models: (i) the same autoregressive model that we301

will then use for reconstruction, which is an ideal case and (ii) an evolutionary model based302

on a Metropolis sampling of a Potts model. These two evolvers come from models trained303

on actual protein families: we use evolvers based on the PF00072 response regulator family304

for results of the main text, and show results for three other families (PF00014, PF00076305

and PF00595) in the Supplementary Material (see Table I for details on these three other306

families). It is important to note that the approach that we propose only makes sense when307

considering the evolution a protein family on which the model in Eq. 4 is trained. Hence, any308

evolver model used in our simulations should reproduce at long times the statistics of the309

considered protein family, i.e. it should satisfy Eq. 7. For this reason, we only consider the310

two evolvers above and do not use more traditional evolutionary models such as an arbitrary311

GTR on amino-acids [34].312

For reconstruction, we compare our autoregressive approach to the commonly used IQ-313

TREE program [27] with the flag -m MFP to use the ModelFinder [35]. In this mode, when314

supplied with a protein sequence alignment and a tree, IQ-TREE infers a joint substitution315

rate matrix for all sequence positions. Because the best evolutionary model found may differ316

when using two different alignments, we pick for each family the model most commonly found317

by IQ-TREE across a reduced range of simulations (Methods). The list of models found318
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FIG. 1. Hamming distance (normalized by sequence length) between reconstructed and real

sequences as a function of node depth, defined as the distance from the node to the closest leaf in

the “ground-truth” tree used to simulate the data. Reconstruction if performed using IQ-TREE and

our autoregressive approach, with the evolutionary model used by IQ-TREE reported in the legend.

The difference between the two methods (“improvement”) is shown as a black curve. Estimation of

the uncertainty is shown as a ribbon. The evolver and reconstruction autoregressive models are

learned on the PF00072 family. Left: Hamming distance between the full aligned sequences, gaps

included, using maximum a posteriori reconstruction. Center: Hamming distance ignoring gapped

positions, using MAP reconstruction. Right: comparison of posterior sampling (solid lines) and

MAP (dashed lines) reconstructions, ignoring gaps.

and used in our analysis is reported in Methods (section IVF): in most cases, the PMB319

matrix was used [36], with different options for across-sites rate variability (+I+G4 or +I+R3).320

Ancestral states are then reconstructed using an empirical Bayesian method [37]. We either321

selected the state corresponding to the maximum of the posterior (MAP) or sampled from322

the posterior. In the extra analysis of the Supplementary Material , we also use the flag323

+C60 to perform reconstruction using profile mixture models [38]. As for the autoregressive324

model, we provide the topology of the real tree to IQ-TREE and let it re-compute the branch325

lengths.326

Autoregressive evolver. We first investigate the case of the autoregressive evolver. This327

setting is of course ideal for our method, as there is perfect coincidence between the model328

used to generate the data and to perform ASR. We first evaluate the quality of reconstruction329

by computing the Hamming distance of the real and inferred sequences for each internal330
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node of the simulated phylogenies. The left and central panels of Figure 1 (Figure S10 for331

additional families) show this Hamming distance as a function of the node depth, that is332

the distance separating the node from the leaves along the branches of the tree on which333

evolution was simulated, and for a MAP reconstruction. Hamming distance is computed334

including gap characters in the aligned sequences on the right panel, while they are ignored335

on the central one, and is normalized by the length of the sequence: a distance of 1 would336

thus indicate entirely different sequences. We see that the autoregressive reconstruction337

clearly outperforms the state of the art method: the improvement in Hamming distance338

increases with node depths, and the distance to the real ancestor drops from ∼ 0.4 to ∼ 0.3339

when using the autoregressive approach. The increase in reconstruction quality with node340

depths is consistent with recent findings that epistasis only becomes important at relatively341

large sequence divergences [39, 40].342

Interestingly, the performance of IQ-TREE degrades if Hamming distance is computed343

including gaps, as in the left panel. This is because like other popular methods, IQ-TREE344

treats gaps in input sequences as unknown amino acids, and reconstructs an ancestral amino345

acid for gapped positions [27, 41]. On the contrary, our autoregressive approach, like many346

generative models, treats gaps as if they were an additional amino acid and will reconstruct347

ancestral sequences that can contain gaps. This effect is particularly visible at low node348

depths and benefits the autoregressive approach as aligned ancestral sequences can in fact349

contain gaps. Considering gaps as an additional amino acid is an advantage in our setup, as350

both evolvers use this convention. However, it is not clear that this advantage extends to real351

biological data, as the insertion-deletions processes during evolution may not be accurately352

captured by our model. For this reason, we also show the performance of reconstruction353

when ignoring the effects of gaps in the Hamming distance. This also leads to a smaller but354

clear improvement when using the autoregressive approach as shown in the central panel.355

The right panel of Figure 1 shows the quality of the reconstruction when reconstructing356

by sampling the posterior. In this case, an ensemble of sequences is reconstructed for each357

internal node, and the metric is the average Hamming distance between this ensemble and358

the real ancestor. Gaps are again ignored when computing the Hamming distance. We again359

observe an improvement when using the autoregressive method, of slightly lesser magnitude360

than in the MAP case.361

To understand how these results depend on the complexity of the evolutionary model used362
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FIG. 2. Left: for posterior sampling reconstruction, average pairwise normalized Hamming distance

among sequences reconstructed for each internal node. This quantifies the diversity of possible

ancestral reconstructions. Center: Normalized Hamming distance between reconstructed sequences

and the consensus sequence of the alignment. Solid lines represent MAP reconstruction or the real

internal sequences, and dashed lines posterior sampling. IQ-TREE appears more biased towards the

consensus sequence. Right: Log-likelihood of reconstructed and real sequences in the autoregressive

model, i.e. using the logarithm of Eq. 4. MAP methods (orange and blue solid lines) are biased

towards more probable sequences. Posterior sampling autoregressive reconstruction gives sequences

that are at the same likelihood level than the real ancestors. The equilibrium distribution of

likelihood of sequences generated by Eq. 4 is shown on the right.

by IQ-TREE, we extend the comparison to reconstruction using the profile mixture models363

proposed by IQ-TREE [38]. In our case, we use the C60 flag to have IQ-TREE infer 60364

different site specific profiles, with the likelihood at each site being averaged over these profiles.365

Results are shown in Supplementary Figure S7 (Figure S11 for additional families). It is clear366

that the profile model improves IQ-TREE’s reconstruction, as the improvement now peaks367

at a Hamming distance of approximately 0.06 instead of 0.1 in Figure 1. However, the perfor-368

mance of the autoregressive reconstruction remains consistently above the independent model.369

370

Properties of reconstructed sequences. To further analyze the reconstructed sequences,371

we first look at the diversity of generated ancestors when sampling the posterior. The left372

panel of Figure 2 (Figure S12 for additional families) shows the average normalized Hamming373

distance between sequences reconstructed at the same internal node, as a function of depth.374
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For deeper nodes (depth ≳ 1), the autoregressive approach reconstructs a significantly more375

diverse set of sequences than IQ-TREE: Hamming distance between reconstructions saturates376

at 0.2 for the latter, while it steadily increases for the former. Higher diversity can be377

interpreted as a greater uncertainty concerning the ancestral sequence. However, this must378

be put in the context of Figure 1: sequences obtained by autoregressive reconstruction are379

more varied but also on average closer to the real ancestor.380

The difference in sequence diversity for the two methods is in part explained by the central381

panel of Figure 2, which shows the Hamming distance between reconstructed ancestors382

and the consensus sequence of the multiple sequence alignment at the leaves. It appears383

there that for deep nodes, IQ-TREE reconstructs sequences that are relatively similar to the384

consensus, with an average distance between the posterior sampling reconstruction and the385

consensus of about 0.3. Contrasting with that, results of the autoregressive method shows386

less bias towards the consensus with an average distance of 0.4 for deep nodes, in line with387

the real ancestors. We also note that MAP sequences for both method are always closer to388

the consensus than sampled ones, a bias that had already been observed [42].389

The bias induced by ignoring the equilibrium distribution of the sequences is also visible390

in the right panel of Figure 2: it shows the log-likelihood of reconstructed and real ancestral391

sequences according to the generative model. Note that the log-likelihood here comes from392

the log-probability of Eq. 4 and can be interpreted as the “quality” of a sequence according393

to the generative model. It is unrelated to the likelihood computed in the phylogenetic394

reconstruction algorithm. Reconstructions with IQ-TREE increase in likelihood when going395

deeper in the tree, eventually resulting in “too good” sequences that are very uncharacteristic396

of the equilibrium generative distribution as can be seen from the histogram on the right.397

This effect also happens with the MAP reconstruction of the autoregressive model, although398

to a lesser extent. The autoregressive reconstruction obtained from sampling the posterior399

does not suffer from this bias and reconstructs sequences with a log-likelihood that is similar400

to that of the real ancestors. Interestingly, IQ-TREE’s reconstruction using a profile model401

suffers less from these biases, as can be seen in Figures S8& S13. This suggests that having402

a more precise evolutionary model tends to reduce biases in the reconstruction.403

404

Potts evolver. We assess the performance of our reconstruction method in the case where405

the evolver is a Potts model. Potts models are a simple type of generative model and have406
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been used extensively to model protein sequences. They can be used to predict contact in407

three dimensional structures, effects of mutations, protein-protein interaction partners [10].408

They can be sampled to generate novel sequences which are statistically similar to natural409

ones and often functional [15, 23]. Additionally, it has recently been shown that they can be410

used to describe the evolution of protein sequences both qualitatively and quantitatively [22].411

Potts and autoregressive models both accurately reproduce the statistical properties of412

protein families. In this sense, they correspond to similar long-term generative distributions413

in the sense of Eq. 7. However, the dynamics of a Potts model are fundamentally different414

from the ones of usual evolutionary models, including our autoregressive one. Indeed, they415

are described by a discrete time Markov chain, instead of the continuous time used in models416

based on substitution rate matrices such as in Eq. 1 [23]. For Metropolis steps which we use417

here, the discrete time corresponds to attempts at mutation which can be either accepted or418

rejected depending on the effect of the mutation according to the model. These dynamics419

naturally give rise to different evolutionary timescales for various sequence positions, as well420

as interesting qualitative behavior such as the entrenchment of mutations [40].421

To see how this change in dynamics affects our results, we (i) sample a large and varied422

ensemble of sequences from the Potts model and use it to train an autoregressive model, in a423

way to guarantee consistent long-term distributions between the Potts and autoregressive,424

and (ii) evolve the Potts model along random phylogenies, generating alignments for the425

leaves and the internal nodes in the same way as above. We then attempt reconstruction426

of internal nodes using the inferred autoregressive model and IQ-TREE. Figure 3 shows427

the results of reconstruction, with panels directly comparable to Figure 1. We again see a428

consistent improvement when using the autoregressive model over IQ-TREE, although of a429

much smaller amplitude, with an absolute improvement gain in Hamming distance of about430

2% for deep internal nodes.431

D. Results on experimental evolution data.432

We take advantage of recent developments in directed evolution experiments to test our433

method in a controlled setting. We use the data published in [43]: in this work, authors434

evolved the antibiotic resistant proteins β-lactamase PSE-1 and acetyltransferase AAC6 by435

submitting them to cycles of mutagenesis and selection for function. Starting from a wild-type436
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FIG. 3. Analogous to Figure 1, but using a Potts model as the evolver. Normalized Hamming

distance between reconstructed and real sequences as a function of node depth, using IQ-TREE

and our autoregressive approach. The difference between the two methods is shown as a black

curve. The evolver and reconstruction autoregressive models are learned on the PF00072 family.

Left: Normalized Hamming distance between the full aligned sequences, gaps included, using MAP

reconstruction. Center: Normalized Hamming distance ignoring gapped positions, using MAP

reconstruction. Right: comparison of posterior sampling (solid lines) and MAP (dashed lines)

reconstructions, ignoring gaps.

protein, they obtained thousands of diverse functional sequences after the directed evolution.437

An interesting result of this work is that it is possible to recover structural information about438

the wild-type from the set of evolved sequences.439

Here, we use this data as a test setting for ASR: the sequences obtained after directed440

evolution all derive from a common ancestor, the wild-type, of which we know the amino acid441

sequence. We can thus reconstruct the wild-type sequence using different ASR methods and442

compare it to the ground truth. The phylogeny is not known, but given the large population443

size during the experiment and the relatively low number of selection rounds, it is reasonable444

to approximate it using a star-tree, i.e. a tree with a single coalescent event taking place445

at the root (see Methods). Since the reconstruction task is most interesting when using446

relatively varied sequences, we decide to use data for the PSE-1 wild-type where 20 cycles of447

mutagenesis & selection have been performed, resulting in a mean Hamming distance of 12%448

to the wild-type.449

Our ASR procedure is as follows. We randomly pick the amino acid sequences of M450
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proteins among the ones evolved from PSE-1 after 20 cycles of mutagenesis & selection, with451

3 ≤ M ≤ 640. The total number of sequences at round 20 of directed evolution is much452

larger, making it computationally hard to use all of them. We then construct a star-like453

phylongeny and place the M selected sequences at the leaves, and perform ASR using either454

IQ-TREE or our autoregressive method which we have trained on an alignment of PSE-1455

homologs. We obtain the reconstructed amino acid sequence of the root, which we can then456

compare to the actual wild-type. As a comparison, and because our approximation of the457

phylogeny is very simple, we also attempt to reconstruct the root by taking the consensus458

sequence of the M leaves. We repeat this procedure 100 times for each value of M for a459

statistical assessment of the different methods.460

The results are shown in Figure 4. The left panel shows the average non-normalized461

Hamming distance to the wild-type as a function of the number of leaves used M . For a462

low M , all methods understandably make a large number of errors, with a mean Hamming463

distance larger than 10 for M = 3. For a higher M , IQ-TREE and the autoregressive method464

stabilize to a fixed number of errors: we find a Hamming distance of ∼ 4.3 for IQ-TREE and465

∼ 2.9 for the autoregressive. The consensus curiously reaches a minimum at intermediate M ,466

a fact discussed in the Supplementary Material , and saturates at a Hamming distance of 6467

when considering all sequences of the round 20. The reconstruction errors are overwhelmingly468

located at six sequence positions. In the central panel, the fraction of mistakes made at469

these six positions over the 100 repetitions of M = 640 leaves is shown for each method.470

We observe that there are two positions (169 and 193) where IQ-TREE systematically fails471

at recovering the wild-type state while the autoregressive model’s reconstruction is correct.472

Interestingly, the corresponding mutations are considered beneficial by the ArDCA model,473

see Figure S6. Inversely, IQ-TREE recovers the wild-type state more often at position 107.474

The right panel shows the logo of the set of reconstructed sequences at these 6 positions and475

for each method.476

Overall, we see that the reconstruction of the autoregressive model is more accurate. This477

gain in accuracy comes from the representation of the functional constraints acting on the478

PSE-1 protein by the generative model, which are inferred separately using an alignment479

of homologs. The improvement in reconstruction errors is modest, going from an average480

Hamming distance of 4.3 to 2.9. However, the gain is intrinsically limited by the data itself:481

the evolved sequences have an average Hamming distance of about 12% to the ancestor,482
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FIG. 4. Reconstruction of the wild-type PSE1 sequence used in [43] using sequences from round 20

of the directed evolution. Left. Non normalized Hamming distance to the wild-type PSE1 sequence

as a function of the number of sequences M used for reconstruction. The fact that the consensus

method has a local minimum is discussed in the Supplementary Material . For comparison, the

average distance between a leaf sequence and the wild-type is 25. The error bars are computed using

the standard deviation obtained from the 100 choices of sequences. Middle. For the six sequence

positions where most of the reconstruction errors are located, fraction of errors of each method out

of 100 independent reconstructions using different sets of M = 640 leaves. Right. Sequence logo of

the reconstructed sequence for the three methods, obtained using 100 independent reconstructions

with different sets of M = 640 leaves. The logo is only shown for the six positions where most

errors are located. For example, all three methods fail 100 times at position 147, reconstructing a

leucine L instead of a phenylalanine F .

which is experimentally challenging but remains small compared to the divergence found483

in the homologs of PSE-1. For instance, the root-to-tip distance estimated by IQ-TREE484

and the autoregressive model are respectively 0.13 and 0.15, corresponding to the regime of485

shallow trees when comparing with Figure 1.486

III. DISCUSSION487

The reconstruction of ancestral protein sequences has long been a cornerstone of evo-488

lutionary biology, helping to elucidate the mechanisms of protein function and evolution489

over billions of years. The accuracy of ASR has profound implications not only for our490
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understanding of evolution but also for practical applications in synthetic biology and proteins491

engineering. However, the widely used models in phylogenetics often rely on the assumption492

of independent sequence evolution at different positions, neglecting epistatic interactions that493

play a crucial role in determining protein function. This simplification limits their ability to494

accurately capture the full complexity of evolutionary dynamics.495

In this study, we addressed this limitation by developing a novel generative model based496

on the ArDCA autoregressive framework, which explicitly accounts for epistasis, an essential497

factor in protein evolution. By incorporating the dependencies between amino acids within498

sequences, our model offers a more realistic description of protein evolution, capturing the499

non-independence of mutations over time. A significant contribution of this work is extending500

the application of generative models to cope with phylogenetic constraints. Our model not501

only preserves the generative capacity over long-term evolution but it also enables the use of502

classical phylogenetic techniques normally restricted to independent-site models. The ability503

to integrate generative context-aware models into these established algorithms represents a504

substantial advance, allowing for more accurate inference of evolutionary relationships and505

ancestral states. This, besides the theoretical interest in ASR, is a powerful tool to help us506

understanding how phylogenetic constraints impact the structure and/or the function of the507

protein of interest.508

Our evaluation of the model using simulated data demonstrated that it outperforms509

IQ-TREE, a state-of-the-art tool for ASR, in reconstructing ancestral sequences. This510

improvement highlights the importance of incorporating epistasis into evolutionary models,511

as ignoring these interactions likely leads to less accurate reconstructions. Furthermore, we512

validated our approach using experimental data from directed evolution experiments. These513

data offer a unique opportunity to test the accuracy of ASR methods, and our model achieved514

more accurate reconstructions of known ancestors compared to IQ-TREE, underscoring the515

robustness of our approach.516

Using the generative nature of our model we can sample sequences at internal nodes517

that should in principle remain functional despite being distant from any naturally occur-518

ring protein. Most ASR studies have used maximum a posteriori or maximum likelihood519

reconstructions, as Bayesian reconstructions are more often found to accumulate deleterious520

mutations and can be non-functional [9, 44]. At the same time, the most likely solution can521

be biased and may be unrepresentative of the phenotype of the real ancestor, leading to522
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incorrect biological conclusions [42, 45]. We ourselves observe these biases in our simulations,523

in the form of a convergence to the consensus sequence and an unnaturally high likelihood524

according to the generative model. Being able to propose an ensemble of sequences sampled525

from a generative model at each internal node could thus lead to more robust biological526

conclusions about ancestral life.527

Another feature of our model is the way it models gaps. IQ-TREE, as well as many other528

phylogenetic reconstruction methods, treats alignment gaps as missing information, and will529

reconstruct amino-acid states at these positions [27, 41]. In contrast, most alignment based530

generative models such as ArDCA treat gaps as a particular state that a position can be531

in, on equal footing with other amino acids [12, 17, 24]. This can have drawbacks when532

modeling evolution, as the dynamics of insertions-deletions and of point mutations can be533

quite different [46]. However, being able to model gaps during ancestral reconstruction likely534

increases accuracy, as there is no reason to think that ancestral sequences would align to535

extant ones without any gaps.536

Despite its good performance, our model comes with several caveats. First, our ad hoc537

way to infer branch lengths is not ideal and differs from standards used in the field. The538

method would clearly benefit from improvements in this direction. More importantly, the539

nature of our approximation has unsatisfying consequences, as the dynamic is non Markovian,540

irreversible, and does not remain at equilibrium with the generative model at all times.541

As evolution in an epistatic landscape is particularly challenging to model and requires542

some kind of approximation. We think our method should be considered as such: a useful543

approximation that allows incorporating context-dependence in phylogenetic models while544

remaining analytically and numerically tractable. The quantitative consequences of its545

undesirable properties are limited, as shown in the supplementary analysis on root placement546

and on the out-of-equilibrium dynamics. Overall, our results show that the benefits of the547

method outweigh its disadvantages.548

The success of our model in both simulations and experimental validation suggests that549

generative models with autoregressive architectures are powerful tools for studying the550

dynamics of protein sequence evolution. By capturing the intricacies of epistatic interactions,551

our model not only improves the accuracy of ancestral sequence reconstruction but also552

provides new insights into the underlying evolutionary processes. Future work could explore553

the application of this model to other protein families and further refine the methodology to554
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enhance its applicability in broader phylogenetic contexts.555

In conclusion, the integration of epistasis into evolutionary models represents a necessary556

and timely advancement for the field. Our generative model provides a more nuanced557

understanding of protein evolution, paving the way for more accurate reconstructions of558

ancestral sequences and a deeper exploration of the evolutionary dynamics that shape the559

diversity of life.560

IV. METHODS561

A. ArDCA562

The ArDCA model assigns a probability to any sequence of amino acids of length L given563

by564

PAR(a) =
∏

i∈σ(L)

pi(ai|a<i), (8)

where σ(L) is a permutation of the L first integers and a<i stands for a1, . . . , ai−1. This565

means that the order in which the conditional probabilities pi are applied is not necessarily566

the sequence order. The permutation σ is fixed at model inference.567

Following [24], we model the conditional probabilities pi as:568

pi(b|a<i) =
1

Zi

exp

(∑
j<i

Jij(b, aj) + hi(b)

)
, (9)

with the i q-dimensional vectors Ji· and hi are learned parameters. It is worth observing569

that the proposed parametrization of the conditional probabilities pi enables an efficient570

parameters learning by likelihood maximization. In the machine learning community, this571

particular parametrization is known as the soft-max regression [47], which is the generalization572

to multi-class class regression of the standard logistic regression. The model is normally573

trained using a multiple sequence alignment of homologous proteins, i.e. a protein family,574

by finding the parameters J and h that maximize the likelihood of the sequences. It was575

shown in [24] that this specific parametrization captures essential features of the variability576

of members of a protein family.577
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By definition, homologous proteins share a joint evolutionary history and cannot be578

considered as statistically independent. To avoid biases, a reweighting is applied to sequences579

based on their vicinity to other sequences. This scheme has been showed to substantially580

increase the performance of such models [10].581

B. Approximative nature of the propagator582

The autoregressive propagator defined in Eq. 5 is practical because it allows computation583

of the transition probability between any two sequences and for any time. However, it is584

only an approximation of the dynamics, as we will show below. The full derivation of these585

results can be found in Section B 2 of the Supplementary Material .586

The propagator that we would ideally like to use would (i) be Markovian and time587

reversible and (ii) have the generative model PAR as its stationary distribution. It is possible588

to derive a transition rate matrix Q that has these properties (Supplementary Material ):589

Qab = µ


0 if a and b differ at more than two sites,

pi(bi|a<i) if a and b differ only at site i,∑L
i=1(pi(ai|a<i)− 1) if a = b,

(10)

where a and b are any two sequences and µ is a scalar rate. Note that the transition rate590

here is from sequence to sequence, and Q is of dimensions qL × qL with q = 21 the number591

of amino-acid states plus the gap symbol. The corresponding transition probability matrix592

P ′ would be defined by593

P ′(b|a, t) = (etQ)ab. (11)

The main issue is that because of the dimensions of Q and because we are incapable of594

calculating its eigenvectors and eigenvalues, P ′ cannot be used in practice. There exist595

workarounds if the goal is to sample from P ′ [19, 48]. However, they are not applicable to596

the task of ASR.597

Our autoregressive propagator P has two properties that make it an attractive approxi-598

mation. First,599

P (b|a, t) −−−→
t→∞

PAR(b), (12)

meaning that it has the right stationary distribution at long times. Informally, we can write600

P ≃ P ′ for t → ∞. Secondly, in the case where matrix H of Eq. 1 has uniform off-diagonal601
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terms equal to µ, the derivative of P with respect to time at t = 0 happens to be the Q of602

Eq. 10. Therefore,603

P (b|a, t) ∼
t→0

(1 + tQ)ba , (13)

where 1 is the identity. This means that for small times, P and P ′ are equal up to order one604

in t. Our P is therefore an approximation of the desired P ′, which becomes exact at small605

and large times.606

Even though we have shown in the text that it gives good results, there are caveats to607

this approximation. The first is that our propagator does not define a Markovian dynamic,608

and is also time irreversible. The second is that it does not remain in equilibrium with the609

generative PAR at intermediate times. However, the approximation can still be useful if610

deviations from equilibrium are not too large. In the Supplementary Material , we show that611

sequences generated from P (b|a, t) when starting from an equilibrium sample have a lower612

likelihood than expected, but which remains well under the intrinsic variations of likelihood613

of a sample of PAR. We therefore conclude that even if our propagator has the undesirable614

property of going out of equilibrium at intermediate times, these deviations remain quite615

small.616

C. Branch length inference617

To perform ancestral sequence reconstruction, not only the topology of the tree but also618

the branch lengths are needed. When comparing the autoregressive method to IQ-TREE,619

it would be unfair to use the branch lengths of the real tree since they do not correspond620

to the dynamical models used in IQ-TREE. For the same reason, using the branch lengths621

reconstructed by IQ-TREE would also be problematic. We thus perform reconstruction with622

the autoregressive by taking the tree inferred by IQ-TREE as an input and by re-optimizing623

its branches.624

While optimizing branch lengths of a fixed topology is possible using site independent625

models, it is more challenging with the autoregressive evolver as it requires an explicit626

summation over all states at given internal nodes. For this reason, we resort to using a profile627

model with a shared substitution rate for this task. The algorithm used to re-infer branches628

is described in section A 3 of the Supplementary Material . In short, it attempts to scale the629

branches of IQ-TREE’s tree using a profile model. Figure S4 shows the good quality of the630
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reconstruction using this technique.631

D. Simulations632

A simulation is performed as follows. First, a random tree of n = 100 leaves is generated633

from Yule’s coalescent. We then normalize its height to a fixed value H that depends on the634

evolver model used: for the autoregressive model we use H = 2.0, while for the Potts model635

combined with Metropolis steps, we use H = 8 sweeps, i.e. H = 8L Metropolis steps where636

L is the length of the sequences.637

A root sequence is sampled from the evolver model’s equilibrium distribution, and evolution638

is simulated along each branch independently starting from the root. In the case of the639

autoregressive evolve, the dynamics is the one of Eq. 5. In the case of the Potts model,640

we use a Markov chain with the Metropolis update rule. In this way, we obtain for each641

repetition a tree and the alignments for internal and leaf nodes. Results presented in this642

work are obtained by averaging over M = 100 such simulations for each protein family.643

E. Experimental evolution data644

To validate the proposed method, we use data from Directed Evolution experiment on645

Beta-lactamase PSE-1 published in [43]. Beta-lactamase is an enzyme produced by bacteria646

that provides them resistance to the beta-lactam antibiotic class. Its activity relies on the647

ability to hydrolize the beta-lactam ring, inhibiting the effect of these antibiotics. In [43], the648

PSE-1 wild type (WT) undergoes 20 rounds of controlled in vivo evolution with an average649

target mutation rate of approximately 3%-4% per round while being selected for its inhibition650

effect on ampicillin. The bacterial population in the experiment is approximately 5×104, and651

the fraction of bacteria surviving each selection round is around 1%. At round 20, the last652

one of the experiment, the library of mutated variants has accumulated an average Hamming653

distance from WT of 12.9% and an average pairwise distance of 19.8%.654

A family of 42k homologous sequences is available from PFAM with code PF13354. For655

this family, an Hidden Markov Model (HMM) of length 214, built on 66 seed sequences, is656

contextually available. We aligned the experimental sequences to the family HMM according657

to the following procedure:658
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1. the WT sequence (length 266) is aligned to the HMM using HMMER [49];659

2. insertion sites in the aligned WT sequence are removed from the aligned WT sequence660

and from all the other sequences of the experimental library;661

3. at positions where the aligned WT has a gap, a gap is also inserted in sequences of the662

experimental library.663

This method ensures that all sequences from the experiment are aligned in the same manner.664

It has been noticed in [22] that taking into account the transition possibilities between665

amino acids allowed by the genetic code is important when describing short term evolutionary666

dynamics with generative models. In our framework, a natural way to include these is by using667

the symmetric matrix H in the decomposition of Eq. 1. Terms of the H matrix do not affect668

the equilibrium distribution of the model, which thus remains generative, but influences the669

short term dynamics. Here, we simply counted the number of possibilities to transition from670

any amino acid to any other based on the genetic code, and we constructed the corresponding671

H matrix. The diagonal matrix remains given by the equilibrium probabilities of amino672

acids in the context of the sequence, as given by Eq. 6. We found that this substantially673

improves the results of the autoregressive reconstruction for the experimental evolution data.674

F. Reconstruction with IQ-TREE675

We run IQ-TREE using the -asr flag to generate states at internal nodes of the tree. By676

default, IQ-TREE reconstructs the maximum a posteriori (MAP) sequence at internal nodes677

[37]. It also generates a “state” file containing the posterior probabilities of amino acids at678

each internal node that we use to sample internal sequences.679

On simulated data, we ran IQ-TREE using the model finder routine to select the evolu-680

tionary model [35]. For each simulated data set, i.e. a protein family and an evolver, we ran681

the model finder on a reduced set of trees. Since running the model finder is time consuming,682

we used these test runs to select a best model for each family/evolver and performed more683

extensive simulations using this one. The selected best models are reported in Table I.684

The model most frequently found was based on the PMB matrix [36], with different685

options for rates depending on the family and evolver, e.g. +G4, +I+G4 or +R4 On the directed686

evolution data, the two most frequently found models were JTT [3] and a between patient687
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IQ-TREE model

Family Alignment length ArDCA Potts

PF00014 Trypsin inhibitor Kunitz domain 53 PMB+R3 PMB+I+G4

PF00072 Response regulator receiver domain 112 PMB+I+G4 PMB+I+G4

PF00076 RNA recognition motif 70 PMB+R3 PMB+I+G4

PF00595 PDZ domain 82 PMB+R3 PMB+R5

PF13354 Beta-lactamase enzyme 214 JTT+G4

TABLE I. Protein families used in this work. The last two columns give the best hit models found

by IQ-TREE, for the two different evolvers (autoregressive and Potts).

HIV model [50]. Since the latter is clearly unrelated to the protein that is considered here,688

we used the JTT+G4 model for reconstruction.689

In addition, we used IQ-TREE to perform reconstruction with profile mixture models,690

using the +C60 flag. Experiments with less complex models, e.g. +C10 and +C20, did not691

lead to an improvement as large as the +C60 flag: for this reason, we only show results for692

the latter. For each family, reconstruction was then performed using the model in Table I693

and appending the profile flag (e.g. legend of Figure S7).694

G. Code & data availability695

The code used in this work is accessible at the following links:696

� the implementation of the reconstruction algorithm described here is available at697

https://github.com/PierreBarrat/AncestralSequenceReconstruction.jl698

� the code used in simulations and data analysis is available at https://github.com/699

PierreBarrat/AutoRegressiveASR.700
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Supplementary Material: Reconstruction of ancestral867

protein sequences using autoregressive generative868

models869

Matteo De Leonardis, Andrea Pagnani, Pierre Barrat-Charlaix870

Appendix A: Reconstruction algorithm871

The classical pruning algorithm described in [51] allows one to compute, for each sequence872

position, the likelihood of the data at the leaves of a tree given an amino acid state at its873

root. It is then possible to infer marginal ancestral state by iteratively re-rooting the tree at874

all internal nodes and e.g. maximizing the corresponding posterior distribution of the root875

state. This technique is only possible if the model of evolution is reversible, in which case876

the position of the root is purely conventional.877

Because the autoregressive model of evolution is irreversible, we cannot change the root of878

the tree and need to adapt the above algorithm. Our method is essentially an adaptation of879

the algorithm described in [26]. We first describe a general version of the algorithm, which880

could be used for any evolutionary model. We then explain how we apply it to our specific881

autoregressive evolver882

1. General description of the algorithm883

Our aim is to obtain, for each sequence position, a marginal reconstruction at each internal884

node. Given a node n in a rooted tree T , calling xn its amino acid state and D the amino885

acid states at the leaves, we want to compute the probability886

Ln(x)
def≡ P (D|T , xn = x), (A1)

that is the probability of the data knowing that n is in state x. We will see below that our887

way to compute Ln involves a prior distribution of internal states coming from the root node,888

and Ln is thus not strictly speaking a likelihood. However, we will abusively refer to it as889

likelihood in what follows. We define the maximum a posteriori (MAP) reconstruction as890
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argmaxx Ln(x), and a “posterior sampling” reconstruction as a sample from a normalized891

Ln(x). Note that since we consider a known and fixed tree and to lighten notation, we ignore892

the dependence on T in the following equations.893

To compute Ln, we introduce the following notation: let a be the ancestral and Cn the894

children nodes of n. Then, let Tn(y, x) be the transition probability from amino acid state895

y to x for the branch a → n. Importantly, Tn is a “directed” quantity: it describes the896

evolution from a to n. This is irrelevant for reversible models, but is important in the897

autoregressive case. Finally, we call q the number of different amino acid states that a site898

can be in: expressions of the form
∑q

y=1 refer to sum over all amino acid states. In the899

autoregressive model, q = 21 for the 20 natural amino acids and the gap symbol.900

First, we use the fact that if n is known to be in some state x, leaf-data on either sides of901

the branch a → n are independent. We call Dbelow the data at the leaves of the clade below n,902

and Dabove the data at the leaves on the other side of the a → n branch. We can then write903

Ln(x) = P (Dbelow|xn = x)P (Dabove|xn = x). (A2)

To simplify notation, we define the following quantities:904

vn(x) = P (Dbelow|xn = x)

un(y) = P (Dabove|ya = y) where a = ancestor(n)
(A3)

Note that un(y) stands for the likelihood of Dabove given that the ancestor a of n is in a given905

state y. This allows us to simplify Eq. A2 to obtain906

Ln(x) = vn(x) ·
q∑

y=1

un(y)Tn(y, x). (A4)

In other words, we split the likelihood into a “below” term v depending on the state x of n,907

and an “above” term u depending on the state y of the ancestor a. The two are linked by908

the transition probability Tn(y, x) along the branch a → n. Summing over all states y then909

yields Ln(x).910
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To compute vn(x) and un(x), we use the following set of recursive relations:911

vn(x) =
∏
c∈Cn

q∑
y=1

Tc(x, y)vc(y)

=
∏
c∈Cn

(Tcvc)x ,

un(x) =

q∑
y=1

ua(y)Ta(y, x) ·
∏

c∈Ca\n

q∑
y=1

Tc(x, y)vc(y)

=
(
uT
aTa

)
x
·
∏

c∈Ca\n

(Tcvc)x ,

(A5)

where we used bold-font symbols – e.g. vn or Tn – to represent vector [vn(1), . . . , vn(q)] and912

the q × q transition probability matrix T (x, y).913

The expression for vn(x) essentially says that the likelihood of data at the tips of the clade914

below n is a product of likelihoods coming from subclades of the children of n, each weighted915

by the transition matrix Tc of branch n → c. On the other hand, the expression for un(x)916

takes into account information coming from above the ancestor a – the term uT
aTa – and917

from the children of a at the exception of n – the term
∏

c∈Ca\nTcvc. It is clear that fixing918

n, this set of recursive relations involves all leaves, and also all branches at the exception of919

the a → n one. This last branch is taken into account when combining vn and un in Eq. A4.920

Finally, the set of relations is closed by the following conditions:921

� if n is a leaf, vn(x) = δx,xn where δ is the Kronecker function and xn the observed state922

at n.923

� if n is the root, un(x) = π(x) with π = [π(1) . . . π(q)] being the equilibrium frequencies924

of amino acids according to the sequence evolution model.925

Computing Ln(x) is done by applying the following steps.926

� Traverse the tree in post-order and compute vn for each node encountered. Since the927

traversal is post-order, vc for c ∈ Cn is always available.928

� Traverse the tree in pre-order and compute un. Since the traversal is pre-order, ua for929

a = ancestor(n) is always known and vn is known from the previous step.930

� For each node n, compute Ln applying Eq. A4.931
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2. Application to the autoregressive model932

Our autoregressive evolution model has the following unusual properties: (i) evolution933

depends on the relevant context, e.g. sites 1, . . . , i− 1 for position i; (ii) as a corollary, the934

transition rate matrix Q defining evolution depends on the sequence towards which evolution935

is happening, as in Eq. 5; (iii) evolution is not reversible, meaning that the orientation of936

the branches of the tree matters.937

We show below that the algorithm described above adapts without problems to these938

particularies. Reconstruction with the autoregressive model proceeds iteratively from the939

first to the last sequence position. Assume that we are reconstructing internal states at940

position i, and that positions 1, . . . , i − 1 are already reconstructed for all internal nodes.941

We then apply the following steps.942

� For all nodes n, compute the profile πn,i(x) = pi(x|x1
n, . . . , x

i−1
n ), where pi is a parameter943

of the autoregressive model defined in Eq. 4 and x1
n, . . . , x

i−1
n is the context at node n.944

� For all nodes n and given the equilibrium frequencies πn,i at this node and position,

compute the transition probability matrix Tn for the branch ancestor(n) → n. This

matrix is defined as

Tn = etnQ,

with Q defined in Eq. 1 and tn the length of the branch.945

� When all transition matrices and node-specific equilibrium frequencies are known, apply946

the algorithm of the previous section to reconstruct state xi
n at all nodes n.947

3. Branch length inference948

To reconstruct the branch length, we start from expressions of the likelihood Eq. A1 &949

Eq. A4. We first note that this expression is specific to a given sequence position i ∈ {1 . . . L},950

and thus rename quantities such as Ln to Li
n. Then, by summing over all possible states951

of internal node n, we obtain an expression for the probability of the data Di at position i952

37



knowing the tree:953

P (Di|T ) =

q∑
x=1

P (Di|T , xn = x)

=

q∑
x=1

Li
n(x)

=
∑
x,y

ui
n(y)T

i
n(y, x)v

i
n(x)

=
〈
ui
n|Ti

n|vi
n

〉
.

(A6)

Finally, the likelihood of the all the leaf sequences is obtained by multiplying over sequence954

positions:955

P (D|T ) =
L∏
i=1

〈
ui
n|Ti

n|vi
n

〉
. (A7)

Starting from this last expression, we use two techniques to infer MAP branch lengths. In956

practice, due to computational time considerations, we use the second one (branch scaling).957

Importantly, since Eq. A7 involves a product over all sequence positions, it is not possible958

to apply it to the autoregressive evolution model. Indeed, the only way to compute e.g. vi
n959

for the autoregressive model is to have fixed the internal node states at positions 1, . . . , i− 1,960

making v1
n, . . . ,v

i−1
n irrelevant. To avoid this difficulty, we apply the two methods below961

using a profile model with site specific frequencies instead of the autoregressive one.962

a. Single branch length optimization963

Expression Eq. A7 is practical because it allows one to compute the probability of the964

data as an explicit function of the transition matrices Ti
n of branch above node n (vn and965

un do not depend on the branch above n). Note that since Ti
n = etnQ

i
n , the dependence on966

the branch length tn is also explicit. We use this to find the tn that maximizes P (D|T ):967

tn = argmax
L∑
i=1

log
〈
ui
n|etnQ

i
n|vi

n

〉
, (A8)

where we take the logarithm for computational reasons.968

It is straightforward to obtain an analytical expression for the gradient of the above969

expression with respect to tn, making optimization reasonably fast. We then optimize all970
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branch lengths starting from the IQ-TREE inferred tree and cycling over the following steps971

until convergence is reached:972

� Compute messages un and vn for all internal nodes n.973

� Pick a non-root internal node n, and optimize its branch length tn.974

This algorithm is guaranteed to converge since the likelihood increases at each step.975

However, it is also computationally expensive: optimizing a single branch n requires computing976

the quantities un and vn, which in turn requires using the recursive relations in Eq. A5 over977

the whole tree. Since we assess the quality of ancestral reconstruction by applying it to many978

trees, we use in practice the quicker method described below979

b. Scaling branch lengths980

In order to make the branch length inference faster, we adopt a scaling strategy. We start981

from the tree inferred by IQ-TREE, using the settings described in the Methods section: for982

each node n, let t0n be the branch length inferred by IQ-TREE. We construct the scaled tree983

Tµ by multiplying the branches by a factor µ: the branch above any node n is tn = µt0n. We984

then find the scaling factor µ that maximizes the likelihood:985

µ⋆ = argmax
µ

P (D|Tµ), (A9)

where the right-hand side can be numerically evaluated using the expression A7 at any986

internal node n (in our case, we use the root node). In contrast with the individual branch987

optimization, it is not possible to write the gradient of the likelihood with respect to µ,988

and we must use a derivative free optimization technique [52, 53]. However, since only one989

parameter must be optimized, this technique turns out to be much quicker for the trees of a990

hundred leaves that we use in the main text. The results can be seen in Figure 4.991

Appendix B: Autoregressive evolution model992

1. Simplified expression for a homogeneous H993

For each site i, the main difference between our model and a traiditional GTR is that994

the equilibrium frequencies of the Markov chain are computed using the context at the995
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previous sites 1, . . . , i− 1. Considering Eq. 1 and Eq. 6, this means that the diagonal matrix996

is determined using the generative model. On the other hand, the symetric matrix H can be997

given any value without changing the long term generative properties of the dynamical model,998

i.e. Eq. 7. Here, we show that if the transitions defined by H are uniform, i.e. Hab = µ for999

any a ̸= b, the propagator takes a simplified form:1000

qi(bi|ai, b<i, t) = e−µtδai,bi + (1− e−µt)pi(bi|b<i),

P (b|a, t) =
L∏
i=1

qi(bi|ai, b<i, t).
(B1)

The interpretation of the site propagator qi(bi|ai, b<i, t) is straightforward: if no mutation1001

occurs with probability e−µt, site i remains in its original state ai; otherwise, with probability1002

(1− e−µt), it is resampled using the equilibrium probability given by the generative model1003

and the context of the sequence pi(bi|b<i). Note that the assumption of a scalar matrix1004

is reasonable if one wishes to ignore the different transition rates between amino-acids.1005

Interestingly, this form is analogous to the F81 model of DNA evolution [51], which also1006

parametrizes the transition rate matrix Q using only the long term equilibrium frequencies1007

(πA, πC , πG, πT ).1008

To lighten notation, we drop the explicit dependence on the position i and the sequence1009

context b<i by defining pb = pi(bi|b<i). We will then compute the n eigenvectors and1010

eigenvalues of Q, where n = 21 for the amino acids and gap symbol. First, note that for the1011

continuous time Markov chain to be well defined, we need the rows of Q to sum to 0. We1012

thus have the following expression for the elements of Q:1013

Q = µ


p1 − 1 p2 . . . pn

p1 p2 − 1 . . . pn

. . . . . . . . . . . .

p1 p2 . . . pn − 1

 = µ
(
1p† − I

)

where 1 is the n-dimensional vector whose entries are all 1s, I is the identity matrix, and

p = (p1, . . . , pq). In particular we note that the outer product 1p† is a rank-one projector

onto the state p, and thus it has a left eigenvector equal to p† (associated to the eigenvalue

1) and n− 1 eigenvalues equal to 0. Indeed:

p†Q = µp† (1p† − I
)
= 0
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As p(b|a, t) = [exp(Qt)]ab, we need to compute the exponential of Q. To do so, we first note1014

that:1015

Q2 = µ2
(
1p† − I

) (
1p† − I

)
= µ2

1p†1︸︷︷︸
=1

p† − 21p† + I


= µ2

(
−1p† + I

)
= −µQ

which in turn implies that Qk = (−1)k−1µk−1Q. From this simple relation for all integer1016

powers of Q we can explicitly compute the exponential of the Q matrix from following power1017

series:1018

etQ =
∞∑
k=0

tkQk

k!

= I +
∞∑
k=1

tkQk

k!

= I − 1

µ
Q

∞∑
k=1

tkµk (−1)k

k!

= I − 1

µ
Q
(
e−µt − 1

)
= Ie−µt + 1p† (1− e−µt

)
We thus obtain the desired result:1019

q(b|a, t) = e−µtδab + (1− e−µt)pb. (B2)

2. Non-Markovianity and approximative nature of the propagator1020

The propagator of the main text is useful because it allows calculation of the transition1021

probability between any two sequences and for any time. However, it is only an approximation,1022

in a way that we show below. The structure of the next four paragraphs is as follows.1023

a. Our propagator does not respect global balance. The consequences are that (i) our1024

dynamics is not Markovian and (ii) the generative model distribution PAR is not1025

stationary.1026
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b. A consequence of the first point is that our propagator is irreversible.1027

c. Our propagator can be seen as an approximation of a continuous Markovian dynamic1028

with PAR as a stationary distribution. The approximation is exact at large times and1029

at order one for small times.1030

d. The deviations between our approximate dynamics and the “correct” ones remain small1031

for intermediate times.1032

The calculations below are valid for the simplified expression of the propagator in Eq. B1,1033

that is for a uniform H in Eq. 1 of the main text. However, there is little doubt that the1034

results are also valid for a more general H. To simplify notation, we also consider the case1035

µ = 1: the case of a generic µ is easily re-derived.1036

a. Non-markovianity1037

A Markov chain that has a stationary distribution π(a) and a transition probability matrix1038

q(b|a) will verify global balance:1039

π(a) =
∑
b

π(b)q(a|b). (B3)

Here, we design a small toy example to show that our propagator does not in general satisfy1040

global balance.1041

Consider a sequence of length L = 2 where each position can be in two states, 0 or 1.1042

Assume that the “fitness landscape” of this protein is such that sequences {0, 0} and {1, 1} are1043

equally functional, while {0, 1} and {1, 0} are not functional. Since an organism possessing1044

sequences {0, 1} or {1, 0} would suffer a fitness loss, they would appear less frequently in1045

nature. The sequence alignment of this “family” could then have the following statistics:1046

P ({0, 0}) = P ({1, 1}) = 1

2
(1− ε) and P ({0, 1}) = P ({1, 0}) = ε

2
, (B4)

with ε ≪ 1. A well trained autoregressive model would consequently have the following

properties:

p1(0) = p1(1) =
1

2
,

p2(0|0) = p2(1|1) = 1− ε and p2(0|1) = p2(1|0) = ε.
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Indeed, state 0 or 1 are equally likely at position one, and given state a at position one the1047

state at position two must also be a with probability 1− ε. The corresponding autoregressive1048

distribution PAR is exactly equal to the natural one in Eq. B4.1049

We now set out to show that global balance does not hold in this case. Consider sequence

{1, 0}, which has probability ε/2. Then for any given time t we expect

PAR({1, 0}) = ε

2
=
∑
a

PAR(a)P ({1, 0}|a, t),

where P is the propagator of Eq. B1.1050

To show the inequality, it is enough to consider one term of the sum on the right-hand

side: the one with a = {0, 0}. Indeed, using Eq. B1 we immediately obtain

PAR({0, 0})P ({1, 0}|{0, 0}, t) = 1− ε

2
· (1− e−t)

1

2
·
(
e−t + (1− e−t)ε

)
∼ O(1).

Since at least one term in the sum is of order one and the terms are all positive, the sum1051

itself is O(1). Since the left-hand side has order ε and ε can be chosen arbitrarily small,1052

global balance cannot hold. Therefore, the target distribution PAR of the autoregressive1053

model, defined in Eq. 4 of the main text, is not the equilibrium of the propagator P (b|a, t)1054

defined in Eq. 5.1055

Another important consequence is that the process is not Markovian. We know from the1056

main text that at long times, P (b|a, t) converges to PAR(b). Injecting this in Eq. B3, we1057

see that that global balance holds for t → ∞. If P (b|a, t) was a Markov process, this would1058

mean that PAR is its stationary distribution and that global balance should hold at all times1059

t. As the example above shows, this is not the case. Therefore, our process is not Markovian.1060

b. Irreversibility1061

For a stochastic model with stationary distribution π and transition probability q(b|a, t),1062

time reversibility is equivalent to respecting detailed balance: for any two sequences a and b1063

and any time t, one should have1064

π(a)q(b|a, t) = π(b)q(a|b, t). (B5)

Detailed balance implies global balance, as summing over either a or b in Eq. B5 directly gives1065

Eq. B3. As the previous section showed, the autoregressive propagator does not satisfy global1066
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balance. Therefore, it cannot be time reversible. We stress that the cause of irreversibility1067

here is not epistasis in itself, but rather the structure of the autoregressive propagator. In1068

fact, it is perfectly possible to design dynamical epistatic models that are time reversible,1069

either with discrete time [23] or with continuous time (Section B 2 c).1070

Note that irreversibility only happens at the sequence level, and not for individual positions.1071

Indeed for each position i and given a sequence context, the autoregressive model has the same1072

structure as classical sequence evolution models. In particular, it is time reversible: given a1073

context and any two amino acid states ai and bi, there is no objective way of determining1074

whether ai evolved in to bi or the reverse.1075

c. Instantaneous transition rates1076

If the autoregressive propagator was Markovian, it would be defined by its transition rate1077

matrix Q:1078

P (b|a, t) ∼
(
etQ
)
ab

, (B6)

where we use the ∼ symbol to remind that the above equation does not actually hold. Note1079

that the Q here is a sequence-to-sequence transition rate matrix of dimension qL × qL where1080

q = 21 is the number of amino-acid plus the gap symbol. It is different from the position1081

specific Qi of the main text.1082

As we have seen, the process is not Markovian. However, we can still calculate the1083

instantaneous transition rate by defining1084

Qab
def≡ dP (b|a, t)

dt

∣∣∣
t=0

. (B7)

Doing so in the case where H is uniform and using Eq. B1 for the transition probabilities1085

yields the following Q:1086

Qab =


0 if a and b differ at more than two sites,

pi(bi|a<i) if a and b differ only at site i,∑L
i=1(pi(ai|a<i)− 1) if a = b,

(B8)

where the pi are the conditional probabilities defined by the autoregressive model. This form1087

is very similar to the one used in other works dealing with epistatic model in phylogenetics1088

[19, 20, 48]. It is quite straightforward to interpret: the transition rate for sequences at1089
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distance strictly higher than one vanishes, meaning that at most one substitution can occur1090

in an infinitesimal amount of time; if two sequences differ at site i, then the transition rate is1091

the probability of observing the new amino acid bi in the context of the starting sequence a.1092

The diagonal elements ensure that lines of Q sum to 0.1093

It is interesting to note that the stationary distribution for Q is the generative distribution1094

PAR(a) =
∏L

i=1 pi(ai|a<i), that is:1095

∑
a

PAR(a)Qab = 0 for all sequences b. (B9)

To demonstrate this, we first note Ni(b) the ensemble of sequences that differ from b at

position i only. Using Eq. B8, we can write

∑
a

PAR(a)Qab =
L∑
i=1

∑
a∈Ni(b)

PAR(a)pi(bi|a<i) + PAR(a)
L∑
i=1

(pi(ai|a<i)− 1)

=
L∑
i=1

∑
a∈Ni(b)

pi(bi|a<i)
L∏

j=1

pj(aj|a<j) + PAR(b)
L∑
i=1

(pi(bi|b<i)− 1),

where the first term involves all sequences at distance one from b and the second handles

the case a = b. To make progress, we note that the sum over Ni(b) can be simplified as

follows (for a generic function f):

∑
a∈Ni(b)

f(a) =
∑
a

f(a)
L∏

j=1
j ̸=i

δaj ,bj


=

q∑
ai=1
ai ̸=bi

f(b1, . . . , bi−1, ai, bi+1, . . . , bL).

This essentially means that inside the sum the symbol aj can be transformed into bj if j ̸= i,

and that the remaining symbol ai is traced over with the condition ai ̸= bi. Using this, our
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calculation yields

∑
a

PAR(a)Qab =
L∑
i=1

pi(bi|b<i)
L∏

j=1
j ̸=i

pj(bj|b<j)

q∑
ai=1
ai ̸=bi

p(ai|b<i)

+ PAR(b)
L∑
i=1

(pi(bi|b<i)− 1)

= PAR(b)
L∑
i=1

(1− p(bi|b<i)) + PAR(b)
L∑
i=1

(pi(bi|b<i)− 1)

= 0.

What this means is that the Q of Equations B7 and B8 is the one that we would like to1096

use: it defines a time reversible Markov process with a stationary distribution PAR that is1097

generative. We call P ′ this “correct” Markov process, which is defined by1098

P ′(b|a, t) = (etQ)ab. (B10)

However, since matrix Q is of dimensions qL × qL and we do not know how to compute its1099

eigenvectors, we cannot actually compute P ′(b|a, t).1100

Instead we use the process P introduced in the main text, which has two properties: (i)1101

its derivative at t = 0 is Q (Eq. B7) and (ii) it has PAR as a stationary state for t → ∞. In1102

other words, P verifies the following:1103

P (b|a, t) ≃ (1 + tQ)ab ≃ P ′(b|a, t) for t ≪ 1,

P (b|a, t)− P ′(b|a, t) −−−→
t→∞

0,
(B11)

where 1 is the identity matrix. In other words, the propagator of the main text is an1104

approximation of the continuous time dynamics associated with PAR, which becomes exact1105

at small and large times.1106

d. Deviations at intermediate times1107

An undesired consequence of our approximation is that when starting with sequences1108

sampled from the target distribution PAR, the propagator P of the main text generates1109

out-of-equilibrium sequences at intermediate times. On the contrary, equilibrium would be1110

maintained if using the exact propagator P ′ of Eq. B10. In mathematical terms, and using1111
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the notation of the previous section, we would have1112 ∑
a

PAR(a)P ′(b|a, t) = PAR(b)∑
a

PAR(a)P (b|a, t) = πt(b),
(B12)

where πt is a distribution over sequences that becomes equal to PAR for t → 0 and t → ∞.1113

In order to quantify how far from equilibrium the model goes, we need to compare PAR and1114

πt at intermediate times. We do this by performing two numerical experiments.1115

First, starting from an initial sequence a sampled from PAR, we compute the average1116

log-likelihood of sequences sampled from P (b|a, t). We then average this process over a to1117

define1118

L(t) =
∑
a,b

PAR(a)P (b|a, t) log
(
PAR(b)

)
=
∑
b

πt(b) log
(
PAR(b)

)
. (B13)

For a perfect approximation, L(t) should remain equal to the average log-likelihood of1119

sequences sampled from the generative model at all times. The right panel of Figure S1 shows1120

that L(t) drops at intermediate times, which means that our propagator generated sequences1121

that are “worse” than the generative model. However, the magnitude of this drop (about 51122

at its minimum) is small when compared to the distribution of log-likelihoods sampled from1123

PAR. It is also small compared to the biases in the likelihood of reconstructed sequences1124

shown in Figure 2 of the main text.1125

Our second test consists in using a tree generated in the same way as the ones used in1126

the main text, and to simulate evolution using our autoregressive model by starting from1127

an equilibrated root sequence. We then compute the distribution of log-likelihood of the1128

leaves sequences. Again, for a process that is always at equilibrium, the distribution at the1129

leaves should be the same as the one used to generate the root. The left panel of Figure S11130

shows that this is not the case, with the log-likelihood of the leaves being on average lower.1131

However, the two distributions are still quite close, in particular for their left tail.1132

We conclude from these experiments that even if our propagator has the undesirable1133

property of going out of equilibrium at intermediate times, these deviations remain quite1134

small. The autoregressive propagator can thus be seen as a useful approximation, allowing1135

reconstruction at internal nodes without sacrificing much of the generative properties of the1136

original model.1137
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Figure S 1. Because it does not respect global balance, the propagator generates “out of equilibrium”

sequences at intermediate times. Left: Distribution of log-likelihood of sequences at the tips of a

tree (blue curve), when simulated using the autoregressive propagator and with a root sampled

from the ArDCA model. For a dynamics that remains in equilibrium, the distribution should

match the one of the ArDCA model (black curve). The shift indicates a slight out of equilibrium

behavior. The tree used is generated in the same way as those used in the main text. Right:

Log-likelihood of trajectories obtained by sampling the auto-regressive propagator at different times.

Thin blue curves are example individual trajectories, with the initial sequence taken randomly

from the equilibrium distribtion of the ArDCA model. The thick blue curve is the average of many

individual trajectories. The black curve is the average log-likelihood of sequences sampled from the

ArDCA equilibrium distribution. The drop in average likelihood around t = 1 is indicative of the

out of equilibrium behavior. However its amplitude remains small with respect to the width of the

equilibrium distribution

3. Position of the root1138

Because the autoregressive model is irreversible, the probability of a reconstruction depends1139

on the orientation of the branches of the tree, and thus on the placement of the root. To1140

quantify this dependence, we perform the following numerical experiment.1141

1. Original tree and reconstruction. We first generate a tree at random and simulate1142

evolution on it using the autoregressive model, using the same procedure as in the1143

main text. Note that by construction, the placement of the root for this original tree is1144
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known exactly. We then perform ancestral reconstruction using the same autoregressive1145

model, and refer to these ancestral sequences as the original reconstruction.1146

2. Reconstruction on re-rooted trees. We then iteratively root the original tree at each1147

internal node, and perform reconstruction again using the same leaf sequences as before.1148

In this case, the placement of the root is wrong in the sense that it does not correspond1149

to the evolutionary process that generated the leaf sequences.1150

We use original trees of n = 100 leaves, and make 10 repetitions of this experiment. For1151

a given repetition, the sequence at each internal node is reconstructed n − 1 = 99 times.1152

Since there are 99 internal nodes and 10 repetitions, we obtain a set of ∼ 105 reconstructed1153

sequences. For each of these, we can compute:1154

� the amplitude of the re-rooting event, that is the branch-length distance between the1155

original root of the tree and the one for which the reconstruction was performed;1156

� the variation with respect to the original reconstruction, measured in Hamming distance;1157

� the loss in performance, that is the increase in Hamming distance to the real ancestor1158

with respect to the original reconstruction.1159

1160

Figure S2 shows the results of this experiment. On its top-left panel, we see that there1161

are indeed variations in the reconstructed sequences when changing the position of the1162

root. However, the amplitude of these variations are quite limited, as they are on average1163

smaller than 0.4%. We find the loss in performance to be one order of magnitude lower,1164

typically around 0.05%. This suggests that the variations mostly occur at sites where the1165

reconstruction was unreliable to begin with.1166

The top-right panel shows the same quantities but only for nodes that are close to the1167

original root of the tree (distance < 0.1). These are nodes where we can expect more variation,1168

as they are located far from the leaves. We indeed see that there reconstruction varies much1169

more when the root is changed, with a difference of up to 0.08 Hamming distance extreme1170

root misplacements. On the other hand, the loss in performance of the reconstruction remains1171

very small, on the order of 0.1%. Again, this suggests that the change in reconstructed1172

sequence when misplacing the root mostly occurs in parts of the sequence that were unreliable1173

to begin with.1174
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Figure S 2. Dependence of ancestral sequence reconstruction on the position of the root. Top-left:

Variation in sequence reconstruction and loss of performance as a function of the amplitude of the

re-rooting. The blue curve shows the average Hamming distance between MAP ancestral sequences

when using the original tree (i.e. correct root placement) or a re-rooted tree, as a function of the

amplitude of the re-rooting. The orange curve shows the degradation in reconstruction performance

when changing the root position. Top-right: Same as top-left, but showing only nodes that are

close (distance < 0.1) to the original root of the tree. These nodes are the farthest away from the

leaves. Variation in the reconstruction is clearly larger, but the loss in performance remains very

small. Bottom-left: Distribution of the variation in reconstruction for re-rooting of large amplitude

(i.e. distance > 1.5): most reconstructions vary very little. In rare cases, the reconstruction varies

significantly: in 0.2% of cases, the Hamming distance between two reconstructions is greater than

10%. Bottom-right: Average change in log-likelihood of the reconstruction of the root as a

function of the amplitude of the re-rooting.

The bottom-left panel shows the distribution of variation in reconstruction for the larger1175

root displacements (about 70 000 reconstructions). As expected, the variation is small in the1176

vast majority of cases. Interestingly however, we observe that changing the root of the tree1177

leads to large fluctuations in reconstruction in rare cases. For instance, in about 0.2% of1178

cases, the Hamming distance between two reconstructions is greater than 10%.1179
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Finally, the bottom-right shows that the likelihood of the reconstruction of the new root1180

sequence decreases with how far it is placed from the original root. This means that if the1181

position of the root was unknown, it could still be guessed with reasonable accuracy based1182

on the likelihood.1183

Appendix C: Directed evolution data1184

1. Minimum reconstruction error of the consensus1185

In the left panel of Figure 4, the Hamming distance of the consensus of M sequences to1186

the wild-type sequence shows a minimum for an intermediate value of M . This is at first1187

counter-intuitive, and we present here a minimalistic example to illustrate this phenomenon.1188

We consider the simplified case with binary sequences of length L and a star-like tree1189

with M leaves at equal distance from the root. The root sequence is r = (0, . . . , 0), and the1190

sequence of leaf m is xm = (x1, . . . , xL) with xi ∈ {0, 1}. We now assume that the first site1191

in the sequence is much more variable than the others, so that it is frequent for sequence xm
1192

to have a 1 at position i = 1, but rare at positions i > 1. The probability of observing state1193

1 at a site i in a leaf sequence is1194

P (xm
i = 1) =


1
2
+ ε if i = 1,

ε if i ̸= 1,
(C1)

where ε > 0 is a parameter that in principle depends on the root-to-tip distance of the tree.1195

We now consider the consensus of the leaf-sequences and how close it is to the root1196

r = (0, . . . , 0). For the first position i = 1, the probability that the consensus differs from1197

the root is the probability that more than M/2 leaves have mutated at this position. This is1198

the probability that a binomial variable of parameters
(
1
2
+ ε,M

)
takes a value larger than1199

M/2: we call α
(
1
2
+ ε,M

)
this probability. Likewise, for a position i > 1, the probability1200

that the consensus differs from the root is the probability α(ε,M) that a binomial variable1201

of parameters (ε,M) takes a value larger than M/2.1202

It is then immediate that the average Hamming distance H(M) between the consensus1203

and the root if there are M leaves is1204
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⟨H(M)⟩ = (L− 1)α(ε,M) + α

(
1

2
+ ε,M

)
. (C2)

Ideally, we would like to show that for certain values of ε, ⟨H(M)⟩ has a minimum at

intermediate M . Unfortunately, we are unable to give analytical expressions for α(p,M)

for generic p and M . Before exploring this with a numerical simulation, we show that in

our setup the consensus of M = 1 sequence can be better than the consensus of an infinite

number of sequences. The limits of α for large and small M are easily obtained:

α(p,M = 1) = p and α(p,M → ∞) =

1 if p > 1
2

0 if p < 1
2

.

Here, with 0 < ε < 1/2, we have α
(
1
2
+ ε,M → ∞

)
= 1 and α (ε,M → ∞) = 0. In other1205

words, for M → ∞, the consensus at the first site will always differ from the root (as expected1206

because it mutates “fast”) while the consensus at other slow-evolving sites will be equal to1207

the root state. We therefore obtain1208

⟨H(M → ∞)⟩ = 1 and ⟨H(M = 0)⟩ = Lε+
1

2
. (C3)

If Lε < 1/2, we observe that on average, the consensus of one sequence is closer to the root1209

than the consensus of an infinite number of sequences.1210

The general case is explored in Figure S3: we show the numerical values of these1211

α
(
1
2
+ ε,M

)
and α (ε,M) for ε = 0.05 and L = 10. The first term α

(
1
2
+ ε,M

)
increases1212

monotonically from 1
2
+ ε to 1, while the second decreases from ε to 0. Combining the two1213

with Eq. C2, we see that ⟨H(M)⟩ has a minimum at an intermediate M .1214
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Figure S 3. Quantities α
(
1
2 + ε,M

)
, α (ε,M) and ⟨H⟩ as a function of the number of leaves M

(odd values only). α(p,M) is defined to be the probability that a binomial variable of parameters

(p,M) takes a value below M/2. α
(
1
2 + ε,M

)
is increasing from 1/2 + ε to 1 while α (ε,M) is

decreasing from ε to 0. The average Hamming distance reaches a minimum for an intermediate

number of leaves. Values of parameters: ε = 0.05, L = 10.
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Appendix D: Supplementary figures1215

1. Extra figures1216

Figure S 4. Quality of branch length inference with the single-branch technique of section A3b,

using data simulated with the autoregressive evolver and a tree with fixed topology. This is the

technique used in the reconstructions of the main text. The original branch lengths inferred by

IQ-TREE are displayed for comparison. Left: inferred distance vs distance in the real trees for

every pair of leaves. Right: Cumulative distribution of pairwise distance along the tree between

leaves for the two inference methods and for the real tree. The discontinuity in the curve for the

real tree is caused by the ultrametricity and fixed total height of the generated trees.
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Figure S 5. Distribution of node depth for trees coming from the Kingman and Yule coalescents.

Node depth is defined as the distance from a node to the closest leaf. Data is obtained by sampling

several trees from each coalescent. Heights of trees are normalized to one. The Kingman process

concentrates most of the nodes in close vicinity to the leaves, while the Yule process spreads them

more evenly.
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Figure S 6. Distribution of estimated effect of single mutations by ArDCA in the PSE1 sequence

(black curve). The effect of a mutations is estimated by computing the difference in log-likelihood

between the mutant sequence and the wild-type: negative values are detrimental and 0 represents a

neutral mutation. As expected, most mutations are estimated to be detrimental but mutations

found in the consensus of round 20 are mostly beneficial or neutral. The six reconstruction errors in

Figure 4 are displayed as vertical bars. The two positions 169 and 193 where ArDCA outperforms

IQ-TREE correspond to beneficial mutations.
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2. Reconstruction of PF00072 using profile models1217

Figure S 7. Equivalent to Figure 1 of the main text, but using the +C60 flag in IQ-TREE’s

reconstruction (profile model).

Hamming distance between reconstructed and real sequences as a function of node depth, using

IQ-TREE and our autoregressive approach. The evolution model used by IQ-TREE is reported in

the legend. The difference between the two methods (“improvement”) is shown as a black curve.

Estimation of the uncertainty is shown as a ribbon. The evolver and reconstruction autoregressive

models are learned on the PF00072 family. Left: Hamming distance between the full aligned

sequences, gaps included, using maximum a posteriori reconstruction. Center: Hamming distance

ignoring gapped positions, using MAP reconstruction. Right: comparison of posterior sampling

(solid lines) and MAP (dashed lines) reconstructions, ignoring gaps.
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Figure S 8. Equivalent to Figure 2 of the main text, but using the +C60 flag in IQ-TREE’s

reconstruction (profile model).

Left: for posterior sampling reconstruction, average pairwise Hamming distance among sequences

reconstructed for each internal node. This quantifies the diversity of possible ancestral reconstruc-

tions. Center: Hamming distance between reconstructed sequences and the consensus sequence of

the alignment. Solid lines represent MAP reconstruction or the real internal sequences, and dashed

lines posterior sampling. IQ-TREE appears more biased towards the consensus sequence. Right:

Log-likelihood of reconstructed and real sequences in the autoregressive model, i.e. using the

logarithm of Eq. 4. MAP methods (orange and blue solid lines) are biased towards more probable

sequences. Posterior sampling autoregressive reconstruction gives sequences that are at the same

likelihood level than the real ancestors. The equilibrium distribution of likelihood of sequences

generated by Eq. 4 is shown on the right.
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Figure S 9. Equivalent to Figure 3 of the main text. Analogous to Figure 7, but using a Potts model

as the evolver. Hamming distance between reconstructed and real sequences as a function of node

depth, using IQ-TREE and our autoregressive approach. The difference between the two methods

is shown as a black curve. The evolver and reconstruction autoregressive models are learned on

the PF00072 family. Left: Hamming distance between the full aligned sequences, gaps included,

using MAP reconstruction. Center: Hamming distance ignoring gapped positions, using MAP

reconstruction. Right: comparison of posterior sampling (solid lines) and MAP (dashed lines)

reconstructions, ignoring gaps.
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3. Results for other protein families1218

Figure S 10. Equivalent to Figure 1 of the main text using three other protein families.

Hamming distance between reconstructed and real sequences as a function of node depth, using

IQ-TREE and our autoregressive approach. The evolution model used by IQ-TREE is reported in

the legend. The difference between the two methods (“improvement”) is shown as a black curve.

Estimation of the uncertainty is shown as a ribbon. The evolver and reconstruction autoregressive

models are learned on the PF00072 family. Left: Hamming distance between the full aligned

sequences, gaps included, using maximum a posteriori reconstruction. Center: Hamming distance

ignoring gapped positions, using MAP reconstruction. Right: comparison of posterior sampling

(solid lines) and MAP (dashed lines) reconstructions, ignoring gaps.
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Figure S 11. Equivalent to Figure 1 of the main text using three other protein families, and using

the +C60 flag in IQ-TREE’s reconstruction (profile model).
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Figure S 12. Equivalent to Figure 2 of the main text using three other protein families.

Left: for posterior sampling reconstruction, average pairwise Hamming distance among sequences

reconstructed for each internal node. This quantifies the diversity of possible ancestral reconstruc-

tions. Center: Hamming distance between reconstructed sequences and the consensus sequence of

the alignment. Solid lines represent MAP reconstruction or the real internal sequences, and dashed

lines posterior sampling. IQ-TREE appears more biased towards the consensus sequence. Right:

Log-likelihood of reconstructed and real sequences in the autoregressive model, i.e. using the

logarithm of Eq. 4. MAP methods (orange and blue solid lines) are biased towards more probable

sequences. Posterior sampling autoregressive reconstruction gives sequences that are at the same

likelihood level than the real ancestors. The equilibrium distribution of likelihood of sequences

generated by Eq. 4 is shown on the right.
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Figure S 13. Equivalent to Figure 2 of the main text using three other protein families, and using

the +C60 flag in IQ-TREE’s reconstruction (profile model).
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