Influenza:
Limited predictability of evolution
Ecology of host and pathogen
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Human seasonal influenza virus

~ hundreds of million cases / year —» 5-10 % of humans Generation time ~ 1 week

In constant evolution (especially surface proteins HA & NA) —» Pop. size ~ 10e6 - 10e7

A/H3N2: HA phylogenetic tree .
Variability in the

present population

~ 5e-3 AA mutations / year / site (HA)
—» 2-3 AAchanges / year ~ S

2010 2015
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Traditional approach: travelling fithess wave

Viral population
\/ A

* Mutations have a fixed fithess effect

{ * Fitness determines the fate of a mutant
! * Extra-complexity: competition between mutants
Selection Vlr T
l ,I, T —» Some degree of predictability
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Is this the right way to think
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Clade frequencies: SARS-CoV-2 & Influenza
Covid
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Simple analysis: predictability of influenza
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Inertia of trajectories

Influenza H3NZ2, HA protein
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Using a proxy for fithess

Viral population
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Neher, 2014
Local Branching Index (LBI)

Strains with high fitness
have more offsprings
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Using a proxy for fithess Neher, 2014
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Strain level forecast Huddleston et. al. 2020

* Predict a fitness for each strain --> fit model to data (LBI, antigenic novelty, ...)
* Forecast future population 1 year ahead

A x(t) %(u)
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Strain level forecast Huddleston et. al. 2020

* Predict a fitness for each strain --> fit model to data (LBI, antigenic novelty, ...)
* Forecast future population 1 year ahead
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Limited predictability
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Adaptive immunity and expiring fithess

Adaptation is driven by immunity
* Most adaptive mutations escape immunity

* They only escape a fraction of the host population
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Adaptive immunity of hosts
» fithess advantage expires before fixation
« “ecology”. organisms shape their environment

—» Model hosts’ immunity
explicitly

[Lee et. al., eLife 2019]



Susceptible - Infected model Hostpopulaton S+ 1+ R=1
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Partial sweep with SI model (b=0.7,f=0.8)
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Immune groups: regularize the dynamics
Hosts split into M immune groups, with different cross-immunity

Mutant is adaptive in group 1 Very close to w.t. in other groups
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Immune groups: regularize the dynamics

Hosts split into M immune groups, with different cross-immunity

Mutant is adaptive in group 1

Susceptibles (all groups)

0.344
0.342
0.340
0.338
0.336
0.334

0.332

1 b
K- p ]

—w.L.
~——Mutant

0 250 500 750 1000
Time

0.003 ¢

0.002

0.001 |

0.000

Infectious (all groups)

—w.L.
~——Mutant

0 250 500 750 1000
Time

1.00

050

025

0.00 1 I 1 1
0 250 500 750

Very close to w.t. in other groups

1 1—e¢

Mutant frequency

AN

Time

1000




Adaptive immunity and expiring fithess

Adaptation is driven by immunity
* Most adaptive mutations escape immunity
* They only escape a fraction of the host population
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Adaptive immunity and expiring fithess

Adaptation is driven by immunity
* Most adaptive mutations escape immunity
* They only escape a fraction of the host population
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Used to model covid evolutinary dynamics [Meijers et. al., Cell 2023]



Evolution with partial sweeps

New variants appear at rate 0

Frequency of variants Frequency of initial mutation *

1.0 1.0
w.t. background
Mutant background
0.8 0.8
0.6 0.6
0.4 0.4
0 1000 2000 3000 4000 O 1000 2000 3000 400

Time Time
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New variants appear at rate 0
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Evolution with partial sweeps

New variants appear at rate 0

Mutant vanishes (“sweeps”) Mutant fixes (“sweeps”)
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Evolution with partial sweeps
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Inertia of frequency trajectories

Simulation of a viral population (Wright-Fisher style)
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Evolution with partial sweeps
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Time to Most Recent Common Ancestor

Coalescence time
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Summary

H3N2Influenza:
* Predictibility of evolution is surprisingly low
* Travelling wave models

Partial sweeps
* Adaptation of host immunity
* Fitness advantage of mutant expires before full sweep
* Modeled by a multi-strain Susceptible-Infected model

Evolution with partial sweeps
* Driven by fitness
* Low predictability
* Qualitatively closer to data

Thank you!



Summary

H3N2Influenza:
* Predictibility of evolution is surprisingly low
e Qualitatively different from models

Partial sweeps

* Adaptation of host immunity
* Fitness advantage of mutant expires before full sweep

Evolution with partial sweeps
* Driven by fitness
* Low predictability
* Qualitatively closer to data

Thank you!



Shape of the phylogeny: multiple mergers
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Is this expected? Clonal interference

Frequency
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Genetic linkage: toy model

Simulate a population

Simple fithess lanscape f Z his;

Slow rate of change
Clean sweeps
Change the fitness landscape periodically \

High rate of change
Clonal interference



Genetic linkage: toy model
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Sweep time ~400
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It’s hard to mimic
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