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The rational design of enzymes is an important goal for both fundamental and practical reasons.
Here, we describe a process to learn the constraints for specifying proteins purely from evolutionary
sequence data, design and build libraries of synthetic genes, and test them for activity in vivo using a
quantitative complementation assay. For chorismate mutase, a key enzyme in the biosynthesis of
aromatic amino acids, we demonstrate the design of natural-like catalytic function with substantial
sequence diversity. Further optimization focuses the generative model toward function in a specific
genomic context. The data show that sequence-based statistical models suffice to specify proteins and
provide access to an enormous space of functional sequences. This result provides a foundation for a
general process for evolution-based design of artificial proteins.

A
pproaches for protein design typically
begin with atomic structures and phys-
ical models for forces between atoms,
but the marked expansion of protein
sequence databases and the growth of

new computationalmethods (1–4) have opened
new strategies to this problem. Statistical analy-
ses of homologs comprising a protein family
have recently enabled successful prediction of
protein structure (5–8), protein-protein inter-
actions (9–13), and mutational effects (14–18)
and, for a family of small protein interaction
modules, have led to the successful design of
artificial amino acid sequences that fold and
function in a manner similar to their natural
counterparts (19, 20). These findings indicate
that sequence-based statisticalmodelsmay rep-
resent a general approach for a purely data-
driven strategy for the design of complex proteins
that can work in vivo, in specific organismal
contexts. A first key step is to demonstrate
the sufficiency of these models for specifying
functional proteins.
An approach for evolution-inspired protein

design is shown in Fig. 1, A to C, and is based
on direct coupling analysis (DCA), a method
originally conceived to predict contacts between
amino acids in protein three-dimensional (3D)
structures (1). The starting point is a large and
diverse multiple sequence alignment (MSA)
of a protein family, from which we estimate
the observed frequencies ( f ai ) and pairwise co-

occurrences ( f abij ) of all amino acids ða; bÞ at
positions ði; jÞ, the first- and second-order
statistics (Fig. 1A). From these quantities, we
infer a model comprising a set of intrinsic
amino acid propensities [fields hiðaÞ] and a
set of pairwise interactions [couplings Jijða; bÞ]
that optimally account for the observed sta-
tistics (Fig. 1A). This model defines a proba-
bilityP for each amino acid sequenceða;⋯; aLÞ
of length L:

Pða1;⋯; aLÞ e exp½�Hða1;⋯;aLÞ� ð1Þ

with the Hamiltonian Hða1;⋯;aLÞ ¼ �
X
i

hiðaiÞ �
X
i< j

Jijðai;ajÞ representing a statisti-

cal energy (which provides a quantitative log-
likelihood score for each sequence; seematerials
andmethods). Lower energies are associated
with higher probability. Monte Carlo (MC)
sampling from the model allows for generat-
ing nonnatural sequence repertoires (Fig. 1B),
which can then be screened for desired func-
tional activities (Fig. 1C). If positional con-
servation and pairwise correlation suffice in
general to capture the information content of
protein sequences and if the model inference
is sufficiently accurate, then the artificial se-
quences should recapitulate the functional
diversity and properties of natural proteins.
To test this process, we chose the AroQ

family of chorismate mutases (CMs), a classic
model for understanding principles of catal-
ysis and enzyme design (21–23). These enzymes
occur in bacteria, archaea, fungi, and plants
and operate at the central branch point of the
shikimate pathway leading to the biosynthesis
of tyrosine (Tyr) and phenylalanine (Phe) (Fig.
1D). CMs catalyze the conversion of the inter-
mediary metabolite chorismate to prephenate
through a Claisen rearrangement, leading to
more than a million-fold acceleration of the
reaction rate (24), and are necessary for growth
of bacteria in minimal media. For example,

Escherichia coli strains lacking a CM are
auxotrophic for Tyr and Phe, with both the
degree of supplementation of these amino
acids and the expression level of a reintro-
duced CM gene quantitatively determining
the growth rate (22). Structurally, AroQa sub-
family members exemplified by EcCM, the CM
domain of the CM-prephenate dehydratase
fromE. coli, form a domain-swapped dimer of
relatively small protomers (~100 amino acids)
(Fig. 1E) (25, 26). Their size, essentiality for bac-
terial growth, and the existence of good bio-
chemical assays make AroQ CMs an excellent
target for testing the power of statisticalmodels
inferred from MSAs.
We used DCA to make a statistical model

(Eq. 1) for an alignment of 1259 natural AroQ
protein domains that broadly encompasses
the diversity of bacterial, archaeal, fungal, and
plant lineages. Deducing the exact parame-
ters (hi; Jij) from the observed statistics in the
MSA ( fi; fij) for any protein is computation-
ally intractable, but a number of approxima-
tion algorithms are available (1). Here, we used
bmDCA, a computationally quite expensive but
highly accurate method based on Boltzmann
machine learning (27). For example, sequences
generated by MC sampling from the model
reproduced the empirical first- and second-
order statistics of natural sequences used for
fitting (Fig. 2, A and B). We also found that
themodel recapitulates higher-order statistical
features in the MSA that were never used in
inferring the model (see materials and meth-
ods). These features include three-way residue
correlations (Fig. 2C) and the inhomogeneously
clustered phylogenetic organization of the pro-
tein family in sequence space (Fig. 2D). Our
findings suggest that the statistical model goes
beyond just being a good fit to the first- and
second-order statistics to capture the essential
rules governing the divergence of natural CM
sequences through evolution. By contrast, a
simpler profile model that retains only the
intrinsic propensities of amino acids at sites
[hiðaÞ, fitted to reproduce frequencies of amino
acids f ai ] (fig. S1A) but leaves out pairwise cou-
plings fails to reproduce even the second-order
statistics of the MSA (fig. S1B) and does not
account well for the pattern of sequence diver-
gence in the natural CM proteins (fig. S1D).
These findings raise the possibility that

bmDCA may be a generative model, meaning
that natural sequences and sequences sampled
from the probability distribution PðaÞ are, de-
spite considerable divergence, equivalent. To
test this, we developed a high-throughput,
quantitative in vivo complementation assay
to monitor CM activity in E. coli that is suitable
for studying large numbers of natural and
designed CMs in a single experiment. Briefly,
libraries of CM variants (natural and/or arti-
ficial, see below) were made using a custom
de novo gene synthesis protocol that is capable
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Fig. 1. Evolutionary data-driven protein
engineering. (A) MSA of M natural homologs
provides empirical first- and second-order

statistics of amino acids (fai ; f
ab
ij ), which are used

to infer a statistical model with the bmDCA
method. The probability of sequence
a ¼ ða1;…; aLÞ is an exponential function
of a Hamiltonian, or statistical energy, para-
meterized by intrinsic fields hiðaÞ and couplings
Jijða; bÞ acting on amino acids. (B and C) The
model is used to generate N ≫M artificial
sequences that can be tested in a high-
throughput assay for desired functions. (D) CM
is an enzyme occurring at the central branch
point in the shikimate pathway that leads to the
synthesis of Tyr and Phe. (E) Members of the
AroQa and AroQd families of CMs fold into a
domain-swapped dimer (PDB ID 1ECM).
Active site residues are shown with yellow
stick bonds and arise from both subunits
(dark and light blue). A bound substrate
analog is shown in magenta.

A CB D

E F

Fig. 2. Design and testing of artificial CM sequences. (A to C) 2D
histograms showing the relationship of first- (A), second- (B), and third-order
(C) statistics of natural and bmDCA-designed sequences. The color scale indicates
the number of counts per bin. (D) The top two principal components of the
pairwise sequence distance matrix of natural homologs (blue circles) overlaid
with a projection of artificial CM sequences (black circles); the position of
EcCM from E. coli is marked with a red plus sign. Artificial sequences both
recapitulate data used for fitting (A and B) and also account for statistical

features of natural data not used for fitting (C and D). (E) Workflow for functional
characterization of CM activity. CM-deficient E. coli cells carrying libraries of
variants were grown under selective conditions in minimal medium, after
which we performed deep sequencing of input and selected populations and
calculation of the r.e. of each variant. (F) The relationship of r.e. to catalytic
power [log10ðkcat=KmÞ] for a number of CM variants yields a “standard curve.”
The assay shows a hyperbolic relationship over the range from complete
lack of CM activity to wild-type EcCM activity.
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of fast and relatively inexpensive assembly of
novel DNA sequences at large scale (28) (see
materials andmethods). For example, wemade
gene libraries comprising nearly every natural
CMhomolog in theMSA (1130 out of 1259 total)
and more than 1900 artificial variants by ex-
ploring various designparameters of the bmDCA
model (see materials and methods). These li-
braries were expressed in a CM-deficient bac-
terial host strain (KA12/pKIMP-UAUC) (22),
and all transformants were grown together as
a single population in selective medium lack-
ing Phe and Tyr to select for those variants
exhibiting CM activity (Fig. 2E). Deep sequenc-
ing of the population before and after selection
allowed us to compute the log frequency of
each allele relative to that of wild-type EcCM.

This quantity is called the relative enrich-
ment (r.e.), which under particular conditions
of gene induction, growth time, and temper-
ature quantitatively and reproducibly reports
the catalytic CM activity (Fig. 2F and fig. S2).
This “select-seq” assay is monotonic over a
broad range of catalytic power and serves as
an effective tool to rigorously compare large
numbers of natural and artifical variants for
functional activity in vivo, in a single inter-
nally controlled experiment.
The first study examined the performance

of the natural CM homologs in the select-seq
assay as a positive control for bmDCA-designed
sequences. Natural sequences showed a uni-
modal distribution of bmDCA statistical en-
ergies centered close to the value of EcCM

(defined as zero, Fig. 3A), but it was not obvious
how they would function in the particular
E. coli host strain and experimental conditions
used in our assay. For example, members of
the CM family may vary in unknown ways
with regard to activity in any particular envi-
ronment, and the MSA includes some frac-
tion of paralogous enzymes that carry out a
related but distinct chemical reaction (29, 30).
The select-seq assay showed that the 1130 nat-
ural CM homologs exhibit a bimodal distribu-
tion of complementation in the assay, with
one mode comprising ~38% of the sequences
centered close to the level of wild-type EcCM
and the remainder comprising a mode cen-
tered close to the level of the null allele (Fig. 3B).
A green fluorescent protein–tagged version
of the library suggests that the bimodality of
complementation is not obviously related to
differences in expression levels compared to
the E. coli variant (fig. S3); instead, the bi-
modality presumably originates from non-
linearities linking sequence to growth rate in
the host strain and from the inclusion of some
functionally distinct paralogous sequences.
For the purpose of this study, the bimodality
allows normalization of r.e. scores by the two
modes and by Gaussian mixture modeling to
meaningfully group sequences into those that
are functionally either like wild-type EcCM
(norm. r.e. > 0.42) or like the null allele in our
assay (Fig. 3B). The standard curve shows that
this quantity is a stringent test of high CM ac-
tivity (Fig. 2F).
To evaluate the generative potential of the

bmDCA model, we used MC sampling to ran-
domly draw sequences from the model that
span a wide range of statistical energies rel-
ative to the natural MSA (Fig. 3, C to E), with
the hypothesis that sequences with low en-
ergy (i.e., high probability) may be functional
CMs. To sample sequences with low energy,
we introduced a formal computational “tem-
perature” of T ≤ 1 in our model:

PT ða;⋯; aLÞ e exp½�Hða1;⋯aLÞ=T �

which, in exact analogy to temperature in
statistical physics, serves to decrease the mean
energy when set to values below unity. For
example, sampling at T ∈ f0:33; 0:66g pro-
duced sequences with statistical energies
that closely reflected the natural distribu-
tion (Fig. 3D) or reached even lower val-
ues (Fig. 3C). By contrast, sequences sampled
at T ¼ 1 showed a broad distribution of
statistical energies that deviated signifi-
cantly from the natural distribution (Fig.
3E) toward higher energies. This deviation
is, among other factors, due to statistical ad-
justments [regularization (see materials and
methods)] used during model inference for
compensating for the limited sampling of
sequences in the input MSA.

Russ et al., Science 369, 440–445 (2020) 24 July 2020 3 of 6

Fig. 3. Functional analysis of natural and artificial CMs. (A) Distribution of bmDCA statistical energies
for 1130 tested natural AroQ homologs, relative to the value for EcCM. The data show a unimodal
distribution centered close to EcCM. (B) The distribution of functional complementation by natural
AroQ sequences is bimodal, with ~38% of sequences in one mode near that of EcCM and the rest in another
mode close to the r.e. of the null allele. The bimodality is used to normalize the raw r.e. scores between
zero and the mean of the near-null mode for all libraries in panels B, F to H, and J. (C to E) Distributions of
statistical energies for artificial sequences. (F to H) Distributions of corresponding r.e. values sampled at
T∈ f0:33;0:66; 1g, respectively. (I and J) Distributions of statistical energy and r.e. for artificial sequences
retaining the intrinsic propensities of amino acids at positions but leaving out all correlations. Taken together,
the data show that bmDCA is a generative model.
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We made and tested libraries of 493 to 615
artificial sequences sampled at T ∈ f0:33; 0:66;
1:0g from bmDCA models inferred at two reg-
ularization strengths (Fig. 3, F to H). The data
showed that, overall, these sequences also dis-
played a bimodal distribution of complemen-
tation, with many complementing function
near the level of the wild-type EcCM sequence.
Consistent with our hypothesis, the probabil-
ity of complementation is well-predicted by
the bmDCA statistical energy, with low-energy
sequences drawn fromT ∈ f0:33; 0:66g essen-
tially recapitulating or even somewhat exceed-
ing the performance of natural sequences (Fig.
3, F and G). By contrast, sequences drawn
fromT ¼ 1 showed poor performance, consist-
ent with deviation in bmDCA statistical ener-
gies (Fig. 3H). Overall, 481 artificial sequences
out of 1618 total (~30%, norm r.e. > 0.42) res-
cued growth in our assay, comprising a range
of top-hit identities to any natural CM of 42
to 92% (table S1 and fig. S4, A and B). These
included 46 sequences with <65% identity to
proteins in the MSA, corresponding to at
least 33 mutations away from the closest
natural counterpart. Sequence divergence
from EcCM ranged from 14 to 82% (fig. S4,
C and D). A representation of the positions
in the EcCM protein that contribute most
to the bmDCA statistical energy highlights
residues distributed both within the active
site and extending through the AroQ tertiary
structure to include the dimer interface (blue
spheres, Fig. 4F).
Are the abilities of artificial CM sequences

to rescue just a function of their sequence
distance from their natural counterparts? To
test this, we made 326 sequences with the
same distribution of top sequence identities
as bmDCA-designed sequences but preserving

only the first-order statistics (position-specific
conservation) and leaving out correlations.
These sequences expectedly showed high
bmDCA energies and displayed no comple-
mentation at all (Fig. 3, I and J). Thus, enzyme
function is not simply about themagnitude of
sequence variation and not even about con-
servation of sites taken independently; instead,
it fundamentally depends on the pattern of
correlations imposed by the couplings in Jij
(see Eq. 1).
We selected five natural and five artificial

CMs that complement growth in our assay for
in-depth biochemical studies. The natural se-
quences occur in organisms representing a
broad range of phylogenetic groups and di-
verse environments, and the artificial sequences
were chosen to sample regions that reflect this
diversity (Fig. 4, B and C). The selected CMgenes
were expressed in anE. coli strain that is deficient
for endogenous CM to eliminate any possibility
of contamination with the wild-type enzyme,
and catalytic parameters of the purified pro-
teins were determined using a spectrophoto-
metric assay following the consumption of the
substrate chorismate (22). The data showed that
all 10 CM genes were expressed similarly and
that the natural CMs displayed catalytic parame-
ters similar to those of the previously charac-
terizedE. coli (31) andMethancoccus jannaschii
(32) enzymes (Table 1). Consistent with their
natural-like complementation, the artificial
CMs showed catalytic parameters that closely
recapitulated those of natural CMs. Thus, we
conclude that the bmDCA-designed CMs are
bona fide synthetic orthologs of the CM family.
Putting all the data together, we found a

steep relationship between bmDCA statistical
energy and CM activity (Fig. 4A and fig. S5).
Forty-five percent of artificial sequences res-

cued the CM null phenotype when the sta-
tistical energy was below a threshold value
set by the distribution of statistical energies
observed for natural sequences (EDCA < 50)
(Fig. 4A), and essentially no sequences (<3%)
were functional above this value. Thus, bmDCA
infers an effective generative model, capable
of designing natural-like enzymatic activity
with considerable sequence diversity if statis-
tical energies are within the range of natural
homologs. The extent of sequence variation
from natural homologs highlights the sparsity
of the essential constraints on folding and bio-
chemical function.
The bmDCA model captures the overall sta-

tistics of a protein family and does not focus
on specific functional activities of individual
members of the family. Thus, just like natural
CMhomologs,mostbmDCA-designedsequences
do not complement function under the specific
conditions of our assay (Fig. 4A). But, might it
be possible to improve the generative model
to deduce the extra information that makes a
protein sequence optimal for a specific pheno-
type? A bit of insight comes from the study of
how sequences that rescue function in our
assay occupy the sequence space spanned by
natural CM sequences. Natural CMs that com-
plement function in our E. coli host strain are
distributed in several diverse clusters (Fig. 4B),
but functional artificial sequences also follow
the same pattern (Fig. 4C). This suggests that
information about CM function in the specific
context of the E. coli assay conditions exists in
the statistics of natural sequences and might
be learned. If so, knowledge gained in the first
experimental trial might be added to formally
train a classifier to predict artificial sequences
that encode particular protein phenotypes and
organismal environments.
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Table 1. Biochemical properties of natural and artificial CM enzymes. Construct numbers correspond to the numbering presented in tables S1 to S3,
which provide additional information about these CM proteins.

Construct Closest natural ID to EcCM Top ID kcat [s
−1] Km [mM] kcat /Km [M−1s−1]

Natural
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

1 Escherichia coli 1.00 1.00 64 390 1.6 × 105
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Methanococcus jannaschii 0.30 1.00 5.7 41 1.4 × 105
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

125 Nitratiruptor sp. SB155-2 0.32 1.00 110 ± 10 600 ± 120 2.0 ± 0.6 × 105
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

230 Geobacter uraniireducens 0.30 1.00 45 ± 4 37 ± 7 1.2 ± 0.1 × 106
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

449 Acetoanaerobium sticklandii 0.18 1.00 19 ± 1 190 ± 30 1.0 ± 0.2 × 105
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

528 Ilyobacter polytropus 0.24 1.00 19 ± 2 38 ± 5 5.1 ± 1.2 × 105
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

553 Collinsella intestinalis 0.23 1.00 7.6 ± 3.2 110 ± 20 6.8 ± 1.8 × 104
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Designed
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

1950 Sulfurisphaera tokodaii 0.25 0.67 8.7 ± 1.3 120 ± 20 7.7 ± 2.1 × 104
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2021 Desulfovibrio sp. 0.27 0.68 2.8 ± 0.1 330 ± 10 8.5 ± 0.1 × 103
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2026 Methanocella arvoryzae 0.25 0.69 30 ± 10 220 ± 30 1.4 ± 0.6 × 105
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2051 Methanococcus vannielii 0.22 0.66 3.0 ± 0.1 230 ± 3 1.3 ± 0.0 × 104
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2064 Stroptococcus sanguinis 0.22 0.69 21 ± 13 75 ± 25 2.7 ± 0.8 × 105
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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To test this idea, we annotated the se-
quences in the natural MSA with a binary
value x indicating their ability to function
in our assay (x ¼ 1 if functional, x ¼ 0 if not).
Due to its formal similarity to the DCA frame-
work, we used logistic regression on the an-
notated MSA to develop a model providing a
probability for any sequence a ¼ ða1;⋯; aLÞ
to function in the E. coli select-seq assay; that
is, Pðx ¼ 1jaÞ. Figure 4, D and E, shows that
for low-energy CM-like artificial sequences
sampled from the naïve, unsupervised bmDCA
model (Fig. 4D), the extra condition Pðx ¼
1jaÞ > 0:8 efficiently predicted the subset
that complements in the context of our assay
(83%) (Fig. 4E). These results support an
iterative design strategy for specific protein
phenotypes in which the bmDCA model is
updated with each round of selection to op-
timize desired phenotypes.

What structural principles underlie the gen-
eral constraints on CM function and the extra
constraints for system-specific function? Map-
ping the positions that contribute most sig-
nificantly to E. coli–specific function of CM
sequences showed an arrangement of amino
acids peripheral to the active site, within a
poorly conserved secondary shell around ac-
tive site positions (Fig. 4F). Thus, these posi-
tions work allosterically or otherwise indirectly
to control catalytic activity, a mechanism to
provide context-dependent fine-tuning of re-
action parameters.
The results described here validate and ex-

tend the concept that pairwise amino acid
correlations in practically available sequence
alignments of protein families suffice to spe-
cify protein folding and function (19, 20). The
bmDCA model is one approach to capture
these correlations, but there is more work

to be done to fully understand these models.
Currently, the interpretation of DCA is focused
on the relatively few highest-magnitude terms
in the matrix of couplings (Jij ), because these
terms identify direct structural contacts be-
tween amino acids in protein tertiary struc-
tures (33). Indeed, the top terms inJij for CMs
do nicely correspond to contacts in the ter-
tiary structure (fig. S6). However, contact terms
in Jij alone do not suffice to reproduce either
the alignment statistics in the AroQ family (fig.
S7) or the functional effects of mutations (17).
Instead, function in proteins seems to depend
also on many weaker, noncontacting terms in
Jij that currently have no simple physical inter-
pretation. Similar findings have been made in
the case of predicting protein-protein interac-
tion specificity (34). The weaker terms in Jij
seem to describe the collective evolution of
amino acids within the structure, a property
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Fig. 4. General and system-specific
constraints in CM. (A) The
overall relationship of bmDCA
statistical energies and catalytic
function, with functional sequences
in black and nonfunctional
sequences in blue. The data
expose a strong nonlinear relation-
ship, with functional sequences
strictly below a sharp threshold
(EDCA < 50). This value is the limit
of statistical energies for natural
homologs (Fig. 3A). (B) The two
top principal components of
sequence variation in natural
homologs, with sequences
complementing the E. coli CM
auxotroph in black. (C) The
same as for panel b, but for artificial
sequences, showing a similar
pattern. Sequences chosen
for in-depth biochemical character-
ization are indicated in panels
B and C (see Table 1). (D and
E) The r.e. distributions for
all artificial sequences with
EDCA < 50 (D) or with an
additional statistical constraint
derived from the pattern of
rescue of natural homologs
(Pðx ¼ 1ja); see text for
details) (E). The additional con-
straint identifies sequences
functional in E. coli in our
selection assay. (F) Spatial
architecture of functional
constraints in CM enzymes
mapped onto the EcCM
structure. Blue spheres show
positions constrained in the bmDCA model. Yellow spheres show the extra constraints required for E. coli–specific function, highlighting a
peripheral shell around active site residues important for CM catalysis.
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that may be related to patterns elucidated by
other approaches to sequence coevolution
(1, 35–39). A key next goal is to further refine
the topology and best representation of se-
quence correlations that underlie the physics
of protein structure and function.
However, even pending these necessary re-

finements, the data presented here provide the
foundations for a general data-driven approach
to protein engineering. This approach is similar
to directed evolution in that it works without
the use of physics-based potentials or atomic
structures, but the computational models ac-
cess a sequence space of functional proteins
that is vastly larger than currently understood.
Indeed, the results presented here permit a
lower-bound estimate of the size of the se-
quence space consistent with the evolution-
ary rules for specifying members of a protein
family. For example, at T ¼ 0:66, we conserv-
atively compute a total space of 1025 sequences
that could be synthetic homologs of the AroQ
family (seematerials andmethods). Given that
~30% of sequences randomly sampled from
this pool rescue CM function under our assay
conditions, this amounts to more that 1024 se-
quences that can operate in a specific genomic
and experimental context. These numbers are
enormous in absolute terms but are infinites-
imally unlikely in a sequence space searched
without any model (~10125) or with models
capturing only first-order constraints (1085;
see materials and methods). These consider-
ations suggest that it will be of great interest
to use evolution-based statistical models to
guide the search for functional proteins with
altered or even novel chemical activities.
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