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Abstract. Inverse statistical physics aims at inferring models compatible with
a set of empirical averages estimated from a high-dimensional dataset of inde-
pendently distributed equilibrium configurations of a given system. However, in
several applications, such as biology, data result from stochastic evolutionary pro-
cesses, and configurations are related through a hierarchical structure, typically
represented by a tree, and therefore not independent. In turn, empirical averages
of observables superpose intrinsic signals related to the equilibrium distribution
of the studied system, and spurious historical (or phylogenetic) signals resulting
from the structure underlying the data-generating process. The naive application
of inverse statistical physics techniques therefore leads to systematic biases and
an effective reduction of the sample size. To advance on the currently open task
of extracting intrinsic signals from correlated data, we study a system described
by a multivariate Ornstein–Uhlenbeck process defined on a finite tree. Using
a Bayesian framework, we can disentangle covariances in the data correspond-
ing to their multivariate Gaussian equilibrium distribution from those resulting
from the historical correlations. Our approach leads to a clear gain in accuracy
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in the inferred equilibrium distribution, which corresponds to an effective two to
fourfold increase in sample size.

Keywords: co-evolution, inference of graphical models, phylogeny, statistical
inference in biological systems
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1. Introduction

With the emergence of large, high-dimensional datasets for complex systems across dis-
ciplines, methods of inverse statistical physics have seen rapidly growing interest during
recent years [1]. In the most standard setting, the data provide observational samples
of the ‘microscopic’ degrees of freedom of the system under study—this can be bio-
logical sequences [2, 3], firing patterns of neurons [4, 5], individuals in animal groups
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[6, 7], stock markets [8, 9], etc. Within a static modeling approach, frequently based
on the maximum-entropy principle [10], data �x are assumed to be generated indepen-
dently from some unknown probability distribution P (�x). This distribution describes
the underlying interaction patterns between the observed degrees of freedom, and has
to be learned from data to unveil the rules governing the system. In more rare cases
where data correspond to observed time series, theoretical and algorithmic development
is much less advanced than for independent static data [1].

One of the biggest application areas of inverse statistical mechanics is the modeling
of biological processes. These applications are fueled by the large amount of available
data resulting from the impressive progress in experimental techniques in biology. This
is especially visible in the case of biological sequences, with databases now harboring
a vast amount of high-quality DNA or protein sequences [11, 12]. A common idea in
this context is that it is possible to use characteristics of genes or organisms related by
a common ancestry—called homologous—to construct models of the selection acting
on them. A successful example in this regard is the representation of protein sequences
by probabilistic models in the so-called DCA method [2, 3]. The prototypical datasets
in this context are multiple-sequence alignments (MSA), with lines being a so-called
homologous, i.e. evolutionarily related sequences, and columns specific positions deriving
from some common ancestral position [13]. The MSA contains at least two kinds of
complementary information:

• Phylogenetic information: the distances between sequences carry information about
the evolutionary time since their common ancestor. Using phylogeny inference meth-
ods [14, 15] we may reconstruct the evolutionary history of our dataset, represented
by a phylogenetic tree.

• Co-evolutionary information: positions in a sequence typically do not evolve inde-
pendently, but rather in a correlated way. This co-evolution carries important infor-
mation about the selection forces acting on evolving entities. This fact has been
extensively studied in the case of protein sequences, and used to predict structure,
mutational landscapes or networks of interacting proteins [2, 3].

These two types of information are contained in two complementary features of the
data: phylogenetic inference is based on the comparative analysis of different sequences,
while co-evolutionary information is contained in the correlation of different columns of
the MSA. Modeling approaches using one type of information typically neglect the other
one: inference of phylogenies generally assumes that all positions in a sequence evolve
independently, while co-evolutionary models of proteins assume that sequences in the
MSA are independently distributed. This choice is motivated by the fact that taking the
two types of correlations into account, i.e. through time with phylogeny and across trait
values for co-evolution, results in very hard inference procedures, cf [16, 17]. However,
this can lead to biases in the model parameters: it has for instance been shown that
phylogenetic relations between protein sequences induce non-trivial correlations that are
not related to protein function [18, 19].

In this work, we consider the case of the inverse problem for high-dimensional data
showing hierarchical correlations due to a branching generating process. Our motiva-
tion for this purely methodological study comes from the modeling of protein sequences
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discussed above, but the underlying problem is much more general. Instead of sequences
of discrete characters, like amino acids or nucleotides, we may consider continuous phe-
notypic traits. The branching process is not necessarily the phylogeny of species, but it
may be the genealogy of populations of the same species, or other branching processes
like epidemics spreading or geographic migration.

To address this problem, we use a simple and very general model for the temporal
evolution of correlated variables: a historically well-known way to represent such pro-
cesses is to use Ornstein–Uhlenbeck (OU) dynamics, which models configurations as
Gaussian vectors evolving in a quadratic potential [20]. The use of OU processes on
trees is a common way of representing biological evolution of continuous traits, such as
gene expression levels or macroscopic traits of organisms [14, 21, 22]. In this context,
the quadratic potential represents selection forces acting on the evolving entities. This
formalism has led to the development of methods to infer the strength of selection from
data that is correlated through a phylogenetic tree in the field of phylogenetic compara-
tive methods [23, 24] and for the study of gene expression levels [25–27]. However, these
methods are limited to scalar quantities, and can only be applied independently to each
variable in the system of interest. More recent works have extended these methods to
the case of many variables systems, allowing us to also consider correlations between
these variables [28, 29]. These developments are based on the recursive use of Gaussian
integration of the OU process along branches of the tree. Compared to [29], the method
that we present in this article can be seen as an alternative way to approach the problem
of inferring parameters of an OU process that takes place on a tree.

The use of an OU process to model evolution is a priori limited to continuous
traits. However, it could potentially be used for protein sequences if combined with a
continuous-variable approximation, which has successfully been used in the past [30–32].
In this context, the equilibrium distribution reached by the OU process represents the
probability distribution given by the DCA method, which can be used to predict non-
trivial structural contacts in the protein fold, effects of amino-acid mutations or even
designing novel functional sequences [33–35].

In this work, we are interested in constructing an inference method for parameters
of an OU process from data correlated through a tree. Our approach is purely method-
ological, and the data can represent any set of continuous phenotypic traits, e.g. from
different organisms, with the tree indicating the phylogenetic relations between data
points. Inferred parameters then represent the selection forces without biasing effects
from the phylogeny. The manuscript is divided as follows: we first review in section 2
the main characteristics of the multivariate OU process. We then describe the setting
of the inference problem that we want to solve in section 3 and propose a solution in
section 4. Finally, we present results obtained on simulated data in section 5, with the
context of pairwise models of protein sequences in mind.

2. The multivariate Ornstein-Uhlenbeck process

We consider a system characterized by L continuous degrees of freedom and whose
state is fully described by an L-dimensional vector �x ∈ R

L. These degrees of freedom
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can be continuous phenotypic traits of some living organism, or the sequence of a gene
or a protein if a continuous approximation is made. At equilibrium, �x is assumed to be
normally distributed,

Peq(�x) =
1

Z(J)
exp

{
−1

2
�xTJ�x

}
, (1)

where J is the symmetric, positive definite coupling matrix and Z(J) =
√
(2π)L/ det J

is the normalization constant; the means of all components of �x are set to zero without
loss of generality. We are interested in inferring the coupling matrix from a given amount
of observed states �x of the system. If these observations were independent from each
other, due to the simple Gaussian form of equation (1), J would simply be equal to the
inverse of the empirical covariance matrix of the data, written C = J−1.

However, we consider the case where observations are not independent. On the con-
trary, they result from a dynamical process taking place during a finite amount of time,
and different data-points are therefore correlated to each other. This dynamical process
is described below.

We suppose that the considered system evolves according to the following Langevin
equation

γ−1d�x

dt
= −J�x+ �ξ(t). (2)

Here, �ξ(t) is a vector of uncorrelated white noise, and γ−1 is the characteristic timescale
governing the dynamics. In short, equation (2) states that the system described by
�x undergoes Brownian motion in a quadratic energy landscape characterized by the
coupling matrix J .

We are not interested in �x directly, but rather in its probability distribution
P (�x| �x0, Δt), i.e. in the probability to find the system in state �x knowing it was in state
�x0 sometime Δt in the past. The Fokker–Planck equation corresponding to equation (2)
is straightforward to write,

γ−1∂tP =

(
−

L∑
a,b=1

∂

∂xa
Jabxb +

L∑
a=1

∂2

∂x2
a

)
P , (3)

where the parenthesized expression on the right-hand side is understood as an operator
acting on P . The solution to equation (3) is a multivariate normal distribution [36]:

P (�x|�x0, Δt) =
[
(2π)N det Σ

]−1/2
exp

{
−1

2
(�x− �μ)TΣ−1 (�x− �μ)

}
, (4)

where we introduce the matrices Σ and Λ as well as the vector �μ as

Λ = e−γJ, �μ = ΛΔt�x0, Σ = J−1(�−Λ2Δt). (5)

Equations (4) and (5) define a multivariate OU process.
Note that since matrix Λ is an exponential of J , it is symmetric, has strictly pos-

itive eigenvalues and commutes with J . We also underline that Σ and �μ depend on
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Figure 1. Schematic representation of a tree T underlying the data-generating
process. The process starts at the root node r with a configuration �xr sampled
from Peq(�xr). The dynamics consist of independent realizations of the OU process
on all branches from ancestral nodes a(n) to child nodes n over times corresponding
to the branch length Δtn,a(n), initialized in the ancestral configuration �xa(n). The
observable data only consist of configurations of the leaf nodes (grey circles in
the figure), while configurations of ancestral nodes remain unknown. There are no
restrictions on the topology of tree T and the length of the branches.

Δt, although this dependence is not explicitly written in our notation to make it less
heavy. By taking γΔt � 1 and using the fact that J has strictly positive eigenvalues,
we immediately recover equation (1), meaning that the OU process converges to the
desired equilibrium distribution.

We can compute the joint distribution of two configurations �x1 and �x2 separated by
a time Δt by multiplying equations (1) and (4),

P (�x1, �x2|Δt) = P (�x1|�x2, Δt)× Peq(�x2)

∝ exp

{
−1

2

(
�xT
1Σ

−1�x1 + �xT
2Σ

−1�x2 − 2�xT
1Λ

ΔtΣ−1�x2

)}
. (6)

This equation illustrates the time reversibility of the OU process. Indeed, the distribution
is symmetric in �x1 or �x2 and does not depend on which configuration came first.

Equation (6) allows for computing the joint covariance of the correlated equilibrium
configurations �x1 and �x2. The probability distribution in equation (6) is normal with an
inverse covariance matrix defined by blocks: Σ on the diagonal and −ΛΔtΣ off-diagonal.
By inverting this block matrix, given that Λ and Σ commute and are invertible, we
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obtain the following covariance:

〈�x1�x
T
2 〉Δt = ΛΔtJ−1 = ΛΔtC. (7)

Equation (7) allows us to identify typical timescales associated to the OU process.
Let us call ρa the eigenvalues of J . The eigenvalues of ΛΔtC are then equal to ρ−1

a e−γρaΔt.
Since all ρa are positive, the eigenvalues of ΛΔtC vanish exponentially over time over
timescales of the form ρaΔt. The slowest timescale of exponential decay is set by τ−1

c

= γρmin , with ρmin being the smallest eigenvalue of J . Thus, for Δt/τ c � 1, �x1 and �x2

are uncorrelated, whereas they are highly correlated for Δt/τ c � 1. It should be noted
that for Δt = 0, the joint correlation matrix of �x1 and �x2 becomes non invertible, and
equation (7) becomes irrelevant. Actually, �x1 and �x2 coincide at that point, i.e. we have
P (�x1, �x2|Δt = 0) = Peq(�x1)× δ(�x1 − �x2) using the L-dimensional Dirac distribution.

3. Statement of the problem

The problem discussed here is the inference of the probability distribution describ-
ing samples that are hierarchically correlated by a tree, cf figure 1. Formally, we
assume that the data consist of N real-valued vectors of length L, denoted {�xi} ∈ RL

with i = 1, . . . ,N . Taken individually, we assume that the �xi are distributed according
to equation (1), i.e. according to a multivariate Gaussian of zero mean and covari-
ance C . By construction, the equilibrium covariance between any pair of elements
of a given vector �x = (x1, . . . , xL) is given by the inverse of the coupling matrix:
〈xaxb〉 − 〈xa〉〈xb〉 = Cab = (J−1)ab for all a, b ∈ {1, . . . ,L}. This implies that inferring the
coupling matrix defining the probability distribution amounts to finding the equilibrium
covariance matrix C.

However, this covariance cannot be directly measured as we consider observations
that are not independently distributed. Instead, the set of measured configurations
{�xi}i=1,...,N is the result of an OU process taking place on a tree T , as is illustrated
in figure 1:

• The process starts at the root node r with a state vector �xr drawn from the
equilibrium distribution P eq.

• On each branch (n, a(n)) of length Δtn,a(n) connecting node n with its ancestral
node a(n), the dynamics follow equation (2), starting from initial condition �xa(n),
and running for time Δtn,a(n). In other words, given the state �xa(n) of the ancestral
node, �xn is sampled from P (�xn|�xa(n), Δtn,a(n)); see equation (4).

• As a consequence, OU processes on branches stemming from a common ancestral
node evolve independently, but from an identical initial condition.

• Observed data vectors correspond to the states of the leaves of the tree at the end
of this process. The states of the internal nodes are not part of the observed data
and remain unknown.

This process is thought to represent the evolution of biological traits along a phy-
logenetic tree, with the leaf nodes corresponding to traits observed in today’s species.
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Note that due to the reversible nature of our OU process, the joint probability of any
pair of leaf configurations �xi and �xj , with i, j ∈ {1, . . . ,N}, is given by P (�xi, �xj|Δtij)
(equation (6)), with Δtij denoting the total branch length of the path connecting i and
j in the tree.

The OU process is characterized by the quadratic potential J = C−1 and the rate
γ. Hence, the joint statistics of the leaf configurations {�xi}i=1,...,N (i.e. the data) are fully
determined by C , γ, and the tree T . The aim of this work is to derive a method
for inferring the most likely values of C and γ given the knowledge of the data
D = {�xi}i=1,...,N and the underlying tree T . We consider here that both the topology
and the branch lengths of T are known.

This problem shows two notable extreme cases: the first one is the case where the typ-
ical branch length of the tree is short compared to the timescales introduced in section 2.
As a consequence, leaf configurations are close to identical to the root, i.e. �xi 	 �xr, and
the inference of C becomes impossible due to lack of independent samples from P eq.
The second one is the opposite case where the typical branch length of the tree is long
compared to the longest timescale of the OU process τ c. In this case, the configuration
of a child node is close to independent from that of its ancestor, and leaf configurations
can be considered as independent samples from the equilibrium distribution P eq. C
can then be readily estimated by computing the empirical covariance matrix. We are
interested here in the intermediate regime where substantial tree-mediated correlations
between data make it impossible to simply estimate C with the empirical covariance,
but the depth of the tree introduces enough variability in the data for us to hope to
reconstruct the energy potential J .

We adopt a Bayesian inference approach by writing the probability of a given set of
parameters {C , γ} given the data {D, T } using Bayes’ equation

P (C, γ|D, T ) ∝ P (D|C, γ, T ) · P (C, γ), (8)

with the proportionality constant not depending on the parameters {C , γ}. Here,
P (C , γ) can be any arbitrarily chosen prior distribution. The difficulty in equation (8)
lies in the estimation of the likelihood P (D|C, γ, T ), i.e. of the joint probability of the
datapoints D = {�xi}i=1,...,N for an OU process given by its parameters {C , γ} and the
tree T . We detail the computation of this probability in the following section.

4. Methods

4.1. Calculation of the likelihood

The joint distribution of two configurations �x1 and �x2 separated by time Δt is given by
equation (6) and corresponds to a joint normal distribution. This means that the vector
�X = [�x1, �x2], i.e. the concatenation of vectors �x1 and �x2, follows a normal distribution
with zero mean and variance described above in equation (5). Of importance here is
that this property of the OU process can be extended to the joint distribution of any
subset of nodes in a tree. In other words, if we now define �X = [�x1, . . . , �xN ] to be the

concatenation of all configurations in our dataset D, we can write the distribution of �X

https://doi.org/10.1088/1742-5468/ac06c2 8
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as

P ( �X|C, γ, T ) =
(
(2π)LN det G

)− 1
2 exp

{
−1

2
�XT

G
−1 �X

}
, (9)

where G is the joint covariance matrix and depends on the tree as well as on C and γ.
The joint covariance matrix is a matrix of dimension (L ·N)× (L ·N), built by

N ×N blocks of size L× L with entries

Gij(a, b) =
〈
xa
i x

b
j

〉
− 〈xa

i 〉
〈
xb
j

〉
, i, j ∈ {1, . . . ,N} ; a, b ∈ {1, . . . ,L}, (10)

where the (zero) marginals 〈xa
i 〉 and

〈
xb
j

〉
are explicitly written for clarity. Each block

Gij is describing the connected correlations between two data vectors �xi and �xj , which
are separated by time Δtij, resulting as the sum of all branch lengths of the path
connecting i and j on tree T . Because the OU process is time-reversible, we can directly
apply equation (7) and give all blocks of G in closed form,

Gij =

{
C if i = j

ΛΔtijC otherwise,
(11)

using the (currently unknown) covariance matrix C of a single equilibrium vector �x. We

remind here that Λ = e−γC −1
depends only on γ and C , and commutes with C . As a

direct consequence, all blocks Gij commute with each other and with C .

Equation (9) allows us to compute the log-likelihood of the data �X as a function of
�X itself and of the joint covariance matrix. Indeed, taking its logarithm immediately
gives

LD(G) = −1

2
log det G− 1

2
�XT

G
−1 �X + const. , (12)

but this expression is impractical for any numerical evaluation due to the large dimension
of G. However, the particular block structure of G described in equation (11) allows us
to simplify the expression. To do so, we first introduce the eigenvalues and eigenvectors
{ρa,�sa} of C−1, where the index a runs from 1 to L and vectors �sa are of dimension L.
By definition, we have ρa > 0 for all a. Now using equation (11), we immediately see
that the vectors �sa are also eigenvectors of the individual blocks Gij with eigenvalues
z(ρa, Δtij) where we introduced

z(ρa, Δtij) = ρ−1
a e−γρaΔtij . (13)

By convention, Δtii = 0 and the diagonal blocks are thus included via z(ρa, Δtii) = ρ−1
a .

As the next step, we introduce N ×N -dimensional matrices Ga, a = 1, . . . ,L, with
elements

Ga
ij = z(ρa, Δtij) , 1 � i, j � N . (14)

In other words, for a given index 1 � a � L, Ga is the matrix built by replacing all
blocks of G by their respective ath eigenvalue. Matrices Ga are symmetric and have
their own eigenmodes, that we denote by {λka, �uka}k=1,...,N .
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To obtain the eigenmodes of the joint covariance matrix G as a function of the �sa
and �uka, we construct the direct product of vectors �uka and �sa, defining vectors �Ska of
dimension L ·N :

�Ska = �uka ⊗ �sa

= [u1
ka · �sa, . . . , uN

ka · �sa],
(15)

where the superindex i ∈ {1, . . . ,N} refers to components of �uka. The ith block vector

of �Ska will thus be written as �Si
ka = ui

ka · �sa. We can now show that �Ska are eigenvectors

of matrix G by considering the ith block vector of the product G · �Ska:

(
G · �Ska

)i
=

N∑
j=1

Giju
j
ka · �sa

=

N∑
j=1

z(ρa, Δtij)u
j
ka · �sa

= (Ga · �uka)
i · �sa

= λka(u
i
ka · �sa)

= λka
�Si
ka.

(16)

We have first used the fact that �sa is an eigenvector of Gij , then the definition of Ga, and
finally the fact that �uka is an eigenvector of Ga. This demonstrates that the eigenmodes

of G are
{
λka, �Ska

}
with 1 � k � N and 1 � a � L. Since G is the covariance matrix

of a Gaussian distribution, we conclude the λka to be strictly positive. Interestingly, the
definition of �Ska as a direct product between eigenvectors �sa of the energy potential and
eigenvectors �uka reflecting the correlation structure mediated by the tree illustrates how
these two types of information are entangled in the covariance matrix of the data.

Note that this decomposition of the eigenvectors leads to a drastic decrease in com-
putational complexity for diagonalizing G (at given C , γ and T ), and in consequence
also for calculating the likelihood according to equation (12), which depends on the
inverse covariance matrix G−1. Matrix G has linear dimension LN , so the numerical
diagonalization or inversion takes time O((LN)3). This is hardly achievable for systems
of realistic length L of the state vector, and sufficient number N of data points for
model learning. Following the above description, we need to first diagonalize C−1 (or
equivalently C ), which requires time of O(L3), followed by inversion of the L matrices
Ga, each one having linear dimension N . The total time complexity therefore results in
O(L3) +O(L ·N 3), and the calculation can be easily achieved even on a standard PC.
This observation is essential for inference, since we need to redo this calculation for
many realizations of C and γ, in order to find the ones maximizing the likelihood given
the data D and the tree T . As is shown in appendix A.4, this calculation simplifies even
more when considering a symmetric and homogeneous tree. In this case, the matrices
Ga commute and can be diagonalized simultaneously and analytically for any value of ρa.
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For the case of arbitrary trees, equation (12) can now be rewritten using the eigen-
decomposition of G:

LD(G) = −1

2

N∑
k=1

L∑
a=1

log λka −
1

2

N∑
k=1

L∑
a=1

λ−1
ka (

�X · �Ska)
2

= −1

2

∑
k,a

⎛
⎝log λka + λ−1

ka

(
N∑
i=1

ui
ka�xi · �sa

)2
⎞
⎠ .

(17)

Equation (17) expresses the likelihood as a function of �uka, λka (resulting from the tree T
and given ρa) and �sa (resulting from C ). However, the definition of Ga in equation (14)
makes it clear that its eigenmodes {λka, �uka} depend only on the eigenvalues ρa of C−1,
on γ, as well as on the structure of the tree through the quantities Δtij , although this
dependence cannot be analytically expressed in a simple manner. This means that the
likelihood in equation (17) is in fact a function of {ρa,�sa}, i.e. the eigenmodes of C−1,
of the timescale parameter γ and of the pairwise distances on the tree Δtij.

4.2. Maximizing the likelihood

As stated at the beginning of this section, our main task is to find the equilibrium
covariance matrix C that maximizes the likelihood of the data. We also need to find
the optimal timescale γ. In equation (17), the likelihood is expressed as a function of γ
and {ρa,�sa}, i.e. the eigenvalues and eigenvectors of C−1, either directly or through the
quantities {λka, �uka}. We now attempt to maximize the likelihood with respect to the
eigenmodes {ρa,�sa} and to the timescale γ.

In order to perform this optimization, we need to compute the gradient of the like-
lihood with respect to the eigenvectors {�sa}. Since C−1 is a symmetric matrix, its
eigenvectors form an orthogonal basis of the vector-space of dimension L and their com-
ponents cannot be changed independently. One possible parametrization for the {�sa}
consists of using L(L− 1)/2 scalar Eulerian angles {θpq} with 1 � p < q � L [37, 38].
With the L eigenvalues ρa, this results in L(L+ 1)/2 independent values that fully
parametrize the L(L+ 1)/2 values of C−1. A second possibility, which we have found
faster in practice, is to express the matrix of the {�sa} as the exponential of a skew-
symmetric matrix with L(L− 1)/2 independent values; see appendix A.3. However, this
parametrization does not allow a simple analytical expression of the gradient of the
likelihood, and we use it along with automatic differentiation [39]. For this reason, we
use the Eulerian angles below to express the gradient of the likelihood.

As a first step, we need to compute the gradient of the likelihood LD(G) with
respect to all parameters {ρa, θpq} and γ. To make explicit the dependences of eigen-
values and eigenvectors of the matrices Ga on these parameters, we introduce the
notation �uk(ρa, γ) = �uka and λk(ρa, γ) = λka. Note that from the definition of Ga in
equation (14), its eigenvalues and vectors depend only on the eigenvalues of C−1 and
not on its eigenvectors. In the same way, we will now write G(ρa, γ) instead of Ga.
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The gradient of the likelihood is obtained by differentiating equation (17) with
respect to the parameters of interest. This gives us three equations:

∂L
∂ρa

= −1

2

N∑
k=1

⎧⎨
⎩∂λk

∂ρa
λ−1
k − ∂λk

∂ρa
λ−2
k

(
N∑
i=1

ui
k�xi · �sa

)2

+2λ−1
k

(
N∑
i=1

ui
k�xi · �sa

)(
N∑
i=1

∂ui
k

∂ρa
�xi · �sa

)}
,

(18)

∂L
∂θpq

= −
N∑
k=1

λ−1
k

(
N∑
i=1

ui
k�xi · �sa

)(
N∑
i=1

ui
k�xi ·

∂�sa
∂θpq

)
, (19)

and

∂L
∂γ

= −1

2

N∑
k=1

⎧⎨
⎩∂λk

∂γ
λ−1
k − ∂λk

∂γ
λ−2
k

(
N∑
i=1

ui
k�xi · �sa

)2

+2λ−1
k

(
N∑
i=1

ui
k�xi · �sa

)(
N∑
i=1

∂ui
k

∂γ
�xi · �sa

)}
.

(20)

The derivatives of �uk(ρ, γ) and λk(ρ, γ) with respect to ρ can then be computed using
the following equations [40]:

∂λi(ρ, γ)

∂ρ
= �uk(ρ, γ)

T∂G(ρ, γ)

∂ρ
�uk(ρ, γ) (21)

and

∂�uk(ρ, γ)

∂ρ
=
∑
l �=k

(
�uk(ρ, γ)

T∂G(ρ, γ)

∂ρ
�ul(ρ, γ)

)
(λk(ρ, γ)− λl(ρ, γ))

−1�ul(ρ, γ). (22)

Equivalent equations can be written for their derivatives with respect to γ.
The computation of the gradient of L for a given set of parameters {ρa, θpq} then goes

as follows. For each eigenvalue ρa, we compute and diagonalize matrix G(ρa) to obtain
its eigenmodes �uk(ρa) and λk(ρa). Using equations (21) and (22) and their equivalent
form for γ, we also numerically compute their derivatives with respect to ρa and γ.
This gives us all the quantities to estimate the gradient of L with respect to ρa using
equation (18).

The optimization is performed by a quasi-Newton method (QNM) [41]. Details are
presented in appendix A.5.

5. Results

In order to evaluate the accuracy of our inference procedure, we estimate how close
the covariance matrix Cmax reconstructed by likelihood maximization is to the real
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Figure 2. Pearson correlation between empirical/maximum-likelihood covariance
matrices and the true covariance matrix as a function of γ/γd. The inset plot
represents the ratio between the Pearson correlation for the maximum-likelihood
covariance matrix and the one for the empirical covariance matrix. Simulations are
performed for a tree of 512 leaves and system size L = 4.

covariance matrix C . To establish a reference point for inference quality, we compare C
to the empirical covariance matrix C emp computed as if observations were independent,

i.e. Cemp(a, b) = N−1
∑N

i=1x
a
i x

b
i . Note that it is also possible to estimate the accuracy of

the method by comparing the coupling matrices obtained by inverting each covariance
matrix, namely J , Jmax and J emp. Here, we describe results obtained on artificial data.

Data is generated according to the process described in section 3. We first build
a symmetric binary tree T with N = 29 = 512 leaves. Here, binary means that every
non-leaf node of the tree has exactly two children, while symmetric means that the two
subtrees stemming from any non-leaf node have the exact same topology. The length
of each branch of T is chosen from a uniform distribution in the interval [0, 1]. We also
sample positive semi-definite coupling matrix J of size L× L with L = 4 or L = 10,
with entries normally distributed with mean μJ = 0.8 and σJ = 0.2.

In the case of statistical models of protein sequence, a major achievement is the
ability of pairwise models to predict contacts in the three-dimensional structure of the
protein from an inferred coupling matrix. In order to replicate this setting and to perform
interaction prediction, we randomly set to 0 off-diagonal elements of J with probability
0.7, resulting in a sparsified coupling matrix of approximate density 0.3. Zero elements
of J correspond to variables that do not interact, in analogy to non-contacts in the case
of an application to protein sequences.

In order to investigate the different regimes of tree-induced correlation, we vary the
parameter γ around a reference timescale γd defined as follows:

γd =
1

Δtavρmin
(23)
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Figure 3. (Left) Relative l2-error between empirical or maximum-likelihood covari-
ance matrices and the true covariance matrix as a function of γ/γd. (Right) Relative
l2-error between empirical/maximum-likelihood coupling matrices and the true cou-
pling matrix as a function of γ/γd. Logarithmic scale is chosen for the y-axis because
of large values of the error at low γ. The inset shows the ratio between the two
errors.

where Δtav is the average branch length separating two leaves of T . For γ � γd, leaf
configurations are on average well decorrelated, whereas for γ � γd all leaves will be
strongly correlated. By simulating data using a range of values of γ, we can investigate
these different regimes. Empirically, we find that the range γ ∈ [10−2, 2] · γd covers all
relevant temporal regimes. For each value of γ, we then sample configurations of leaves
of T using the process described in section A1 of the appendix. To avoid statistical noise
when assessing the quality of our inference, we repeat the sampling of leaf configurations
100 times for each value of γ.

For each repetition of the sampling process, we perform our maximum likelihood
procedure and obtain an inferred covariance matrixCmax. We also compute the empirical
covariance matrix C emp as if leaf configurations were independent. Figure 2 shows the
Pearson correlation between the real covariance matrix C = J−1 and the empirical or
inferred ones in the L = 4 case (similar figures for L = 10 are in appendix A.6). As
expected, both methods perform well in the large γ limit with a correlation close to
1, and worse in the low γ limit. In this latter case, correlations due to phylogeny are
too strong for our maximum likelihood method to pick up a signal, and both methods
perform equally poorly. However, there exists an intermediate regime where Cmax is
much closer to the actual correlation than C emp. In figure 3, we plot the relative l2-
error between either covariance matrices in the left panel or coupling matrices in the
right panel, where the l2-error is defined as the l2-norm of the difference between two
matrices, e.g. ||Cmax −C ||2. In both cases, our maximum-likelihood method results in
a consistent improvement over the empirical estimator. However, the relative error still
reaches high values in the low γ regime, which is likely due to Cmax and C emp being
close to singular in this case.
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Figure 4. Quality of prediction of interactions for different values of γ and system
size L = 4. Interactions are defined as non-zero elements of the coupling matrix. In
the L = 4 case, there are six possible interactions. Predictions are made by taking
the largest elements (in absolute terms) of the inferred coupling matrix. The PPV
is the fraction of correctly predicted contacts for a given number of predictions. The
perfect prediction is the one that would be made using the real coupling matrix J .

An interesting way to illustrate the benefits of reconstructing the covariance matrix
using knowledge of the tree is to evaluate the gain in effective sample size. Intuitively,
the use of correlated samples reduces the information contained in the data, as compared
to an equally large dataset of i.i.d. configurations. It is therefore interesting to compare
the accuracy of our inferences with the accuracy obtained by computing the empirical
covariance matrix using i.i.d. samples. This can serve as a baseline for the minimal error
that can be achieved for a given sample size N , but also to estimate an effective i.i.d.
sample size N eff that would empirically result in the same difference found between Cmax

and C . In other words, to each value of ||Cmax −C ||2 corresponds an i.i.d. sample size
N eff for which the same l2-error is obtained.
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We report in figure S5 the l2-error between true and empirical covariances computed
from i.i.d. samples of variable sizes N . As expected, the error increases with decreasing
values ofN . We can use this in turn to express values of the l2-error in correlated samples
in terms of effective i.i.d. sample sizes. For example, the error reached by C emp for
γ/γd ∈ [0.5, 1] and L = 4 lies in the range [0.8, 0.5] with average value 0.7, corresponding
to the one obtained for an i.i.d. sample of size N eff ∼ 16 (l2-error 0.7). The error obtained
in the same range of γ values by using Cmax lies in the range [0.6, 0.3] with average value
0.4, corresponding to i.i.d. sample sizes N eff ∼ 32–64 (with respective l2-errors 0.5 and
0.3). Thus, our correction is equivalent to increasing the number of effective samples by
a factor of 2–4.

Finally, we assess the performance of our method in improving the prediction of
the network of interactions between the Gaussian variables {xa}. We consider that two
variables xa and xb interact if the corresponding entry in the coupling matrix is non-
zero, that is Jab �= 0. Using the data, we predict these interactions by taking the largest
n elements (in absolute value) of the inferred coupling matrix, resulting in n predic-
tions. The fraction TP/n of these n predictions that correspond to non-zero entries
in the true matrix (TP = true positives) defines the positive predictive value (PPV).
This problem is equivalent to the one of predicting contacts in a protein structure
[30, 33].

Figure 4 shows the PPV as a function of the number of predictions for different
values of γ and L = 4 (see figure S10 for the L = 10 case). In this case, the coupling
matrix only has six independent non-diagonal elements, and only six predictions can
be made. Our correction systematically outperforms the predictions from the empirical
coupling matrix, with an always larger PPV. This gain is negligible in the extreme
regimes of very high γ, where the prediction is close to identical to the one obtained
with an i.i.d. sample, or very low γ, where it is essentially random. It is however much
larger in the intermediate regime, with a significantly improved prediction in the region
γ/γd ∈ [0.5, 1].

6. Discussion

In this work, we proposed a method for inferring parameters of an OU process using
data that are correlated through an evolutionary tree. We kept a very general set-
ting in which data can in principle represent any set of continuous phenotypic traits
or potentially discrete sequences if a continuous approximation is made. As such, our
approach is purely methodological, and does not directly investigate any particular
application.

We showed that due to the Gaussian and time-reversible nature of the OU process,
it is possible to write the joint covariance matrix of all data vectors in a simple way. The
resulting matrix G consists of block entries that represent covariances between pairs of
leaves. The dependence of these blocks on the coupling matrix J characterizing the OU
process and on the tree structure can be written explicitly. Interestingly, G only depends
on the tree structure through the pairwise path length Δtij separating leaves along the
tree.
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We then proposed a way to compute the likelihood of the data given the tree and
the parameters of the OU process, namely the coupling matrix J and timescale γ. This
method relies on computing the eigenvalues and vectors of the joint covariance matrix
in an efficient manner. Indeed, it is possible to separate this calculation in two steps: the
first in which we perform the eigen-decomposition of the matrix J, and the second in
which we compute eigenvalues and vectors of matrices Ga that embed the tree structure.
This reduces the computational complexity from O(L3N 3) for a naive inversion of G to
O(L3) +O(LN 3). We also show that this method can be used to compute the gradient
of the likelihood with respect to parameters with the same complexity. This makes the
problem of inferring J amenable to maximum likelihood methods using a gradient ascent
approach.

Finally, we showed that this process gives encouraging results on simulated data,
with a more accurate reconstruction of parameters than if empirical estimation was
performed. These simulations highlight the fact that this method is only useful in the
intermediate regime of phylogenetic correlations. If the timescale γ characterizing the
branch lengths of the tree is too large, correlation of data points through the tree is
weak and an empirical estimation performs well. On the other hand, a very low γ
results in strong phylogenetic biases that make recovering J impossible, basically due
to a strong reduction of the information in a too redundant dataset. However, in an
intermediate regime where intrinsic and historical correlations in the dataset coexist,
our tree-aware reconstruction of J results in clear benefits over a tree-unaware empirical
estimation.

A limitation of our approach remains the long computational time. Even with the
efficient computation of the gradient, it was necessary to use small system sizes, L = 10
at most, to repeat our inference process many times with simulated data in a reasonable
time. For this reason, the framework proposed here is limited to a small number of
variables. In this respect, it is interesting to note that a different manner of computing
the likelihood developed in [29] and based on Gaussian integrations on every branch of
the tree results in an asymptotic complexity of O(NL3).

Although our method can in principle be used for any set of traits, a major motiva-
tion in developing it is its potential application to model of protein sequences. Several
results in recent years have shown that selection forces shaping the evolution of pro-
tein sequences are well described by a pairwise potential [35, 42]. The estimation of
this potential is performed using homologous sequences, and is therefore biased by the
phylogenetic relations between these sequences. Results presented here are a first step
in disentangling effects due to phylogeny from effects due to selection in a principled
way.

However, there remain several challenges in using this framework for protein
sequences. First, the computational power required to process actual sequences is much
larger than what was needed for the small simulated systems presented here. As an
example, a protein of length L = 100 will be represented by q × 100 = 2000 Gaussian
variables, where q = 20 is the number of amino acids. This is of course much larger than
the L = 10 system used as an example to test our approach.

A second question is the capacity of a continuous variable approximation, necessary
when using OU dynamics, to represent dynamical properties of the landscape protein

https://doi.org/10.1088/1742-5468/ac06c2 17

https://doi.org/10.1088/1742-5468/ac06c2


J.S
tat.

M
ech.

(2021)
073501

Global multivariate model learning from hierarchically correlated data

sequences evolve in. This type of approximation has been successfully used before, but
in quite different contexts [30–32]. Its use in the context of modeling the evolutionary
dynamics of protein sequences remains an open question.

Code availability

The code used to compute and optimize the likelihood is available at
https://github.com/ed-rodh/GaussianPhylogeny.
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Appendix A. Description of technical details
A.1. Generating artificial data

We are interested in the case where the dynamics of the L-dimensional OU process
takes place on a tree. For example, if configurations {�x} represent quantitative traits of
some organisms, the tree can represent the genealogy or phylogeny of these organisms.
Therefore, to generate our datasets, we have to be able to simulate the OU process on a
tree. In practice, given a rooted tree such as the one shown in figure 1 of the main text,
we want to sample a configuration �x for every node in such a way that equation (6)
holds for every pair of nodes, with time Δt being the path length connecting the nodes
along the tree.

We use a simple methodology to achieve this. First, note that given an arbitrary
configuration �x0 and a time Δt, we can generate a new configuration �x distributed
according to the propagator equation (4) by exploiting the transformation

�x = ΛΔt�x0 +Σ1/2�η , (A1)

where Λ and Σ are defined in equation (5), and �η is a vector of uncorrelated variables
drawn individually from the normal distribution N (0, 1). Moreover, if �x0 is distributed
according to the equilibrium distribution equation (1), then �x and �x0 are distributed
according to the joint distribution equation (6) describing two equilibrium configurations
at finite time difference. Note that equation (A1) is quite different from the Langevin
equation (2), which describes the instantaneous dynamics of �x in the potential given
by J , and which could also be simulated in a more complicated situation where no
analytical expression for the propagator can be derived.

Given any already sampled internal node in the tree, equation (A1) allows us to
emit a configuration for each of its child nodes. To sample the whole tree, we first draw
the root configuration �xr from the equilibrium distribution equation (1). By recursive
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applications of equation (A1), we then simply work our way down the tree until all
leaves are sampled. Only the configurations at the leaves form the data set, and the
internal configuration remain hidden to our model-learning task.

In our inference scheme, the tree topology and the lengths of the branches where the
dynamics takes place are assumed to be arbitrary but known. For the specific simulations
presented in the main text, we chose a symmetric binary tree T withN = 29 = 512 leaves
and the length of each branch Δt drawn independently from a uniform distribution over
the interval [0, 1].

A.2. Empirical parameters

A.2.1. Eigenvalues and eigenvectors of C−1. We initialize the covariance matrix using
the empirical one:

Cemp =
1

N

N∑
i=1

�xi · �xT
i .

Its eigenmodes {ρ0a,�s 0
a } determine the starting point of the optimization. A suitable

parametrization of �s 0
a in terms of generalized Eulerian angles or a skew symmetric

matrix is described below in appendix A.3.

A.2.2. Timescale parameter γ. The optimization also requires that we initialize the
timescale γ. For coherence with the last section, we define the empirical value of γ as
the optimal one given the data �X , the tree, and the OU process defined by the empirical
covariance matrix.

The probability distribution P for the configurations of two leaves �xi and �xj sepa-
rated by time Δtij is given by equation (6) of the main text. With this distribution we
can analytically calculate the average of the scalar product �xT

i · �xj of two equilibrium
configurations at given time separation:

〈
�xT
i · �xj

〉
P
=

L∑
a=1

〈
xa
i x

a
j

〉
P
. (A2)

The covariance 〈xa
i x

a
j 〉P of two observations separated by time Δtij is given by

equation (7). Using this, we find

〈�xT
i · �xj〉P =

L∑
a=1

(
ΛΔtijC

)
aa

= Tr
(
ΛΔtijC

)
=

L∑
a=1

ρ−1
a e−γρaΔtij . (A3)

Having initialized the covariance matrix C with its empirical value, we know the values
of all members of the rhs of equation (A3) except the one of γ. To find an initial value
of γ which is consistent with the data and the empirical covariance matrix for all pairs
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of data configurations i < j, we search for one that best explains the observed scalar
products between configurations. We thus define γ0 to be the argument minimizing the
functional F (γ):

F (γ) =
∑

1�i<j�N

[
�xT
i · �xj −

L∑
a=1

ρ−1
a e−γρaΔtij

]
. (A4)

Since F depends on a single scalar parameter, it is straightforward to minimize it and
thereby to initialize γ to an empirically reasonable value.

A.3. Parametrizations of eigenvectors

A.3.1. Parametrization using generalized Eulerian angles. The idea is to write the
base vectors �sa as columns of an orthogonal matrix T , and to parameterize this matrix
in terms of L(L− 1)/2 independent variables θpq with 1 � p < q � L. These parameters
are called generalized Eulerian angles, since they generalize Eulerian angles to L > 3.

To construct this matrix, we start from a rotational transformation in a two-
dimensional subspace of an L-dimensional space. It is given by an L-dimensional matrix
of the form

apq =

⎛
⎜⎜⎜⎜⎜⎝

1 · · · · ·
· 1 · · · ·
· · cos θpq · sin θpq
· · · 1 · ·
· · − sin θpq · cos θpq ·
· · · · · 1

⎞
⎟⎟⎟⎟⎟⎠ , (A5)

where all diagonal elements are unity except for the diagonal elements in the pth and the
qth column, which equal cos θpq. All off-diagonal elements are zero, represented as dots
above, except for the one corresponding to the intersection of the pth row and the qth
column, which is sin θpq, and that on the intersection of the qth row and the pth column,
which equals −sin θpq. There are L(L− 1)/2 matrices of this form, corresponding to all
choices of p and q with 1 � p < q � L.

An arbitrary L-dimensional orthogonal matrix T can be represented as a product of
these L(L− 1)/2 orthogonal matrices with appropriate values of the L(L− 1)/2 inde-
pendent parameters θpq. Raffenetti et al [37] exposed a recursive algorithm to efficiently
perform the matrix multiplication, as well as the construction of the derivatives of T
with respect to parameters θpq. The main equations are presented below.

The matrix multiplication can be done by a sequence of L steps implied by the
following recurrence relations where n goes from 1 to L:

A(n) = an,n an−1,n . . .a2,n a1,n, (A6)

T(1) = 1, (A7)

t(n) =

(
T(n−1) 0

0 I

)
, (A8)
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T(n) = A(n)t(n), (A9)

T = T(L), (A10)

where the an,m matrices are defined by (A5) for n �= m, and an,n is the identity matrix
of dimension n.

The recurrence equations given by (A9) can be explicitly written as

T
(n)
kl = cos θkn · t(n)kl − sin θkn · z(n)kl with k, l = 1, . . . ,n (A11)

where

z
(n)
kl =

{
δln for k = 1

sin θk−1n · t(n)k−1l + cos θk−1n · z(n)k−1l for k = 2, . . . ,n
(A12)

with θnn = π/2.

Thus, if T (n−1) is given, we find t (n) from equation (A8). Then, from elements t
(n)
kl

we get z
(n)
kl using (A12) and finally from z

(n)
kl and t

(n)
kl we obtain T

(n)
kl .

Therefore, eigenvectors �sa can be chosen as ath column of matrix T :

ska = T
(L)
k,a = cos θkL · t(L)ka − sin θkL · z(L)ka for k = 1, . . ,L. (A13)

A.3.1.1. Determination of parameters for a given matrix. To use this expression, we still
need to determine parameters θ given an orthogonal matrix T , such that all equations

Tij(θ) = Tij (A14)

are satisfied. This system of nonlinear transcendental equations cannot be solved alge-
braically. However, it is possible to overcome this issue finding the set of θ which
minimizes the square distance between the target and the parametrized matrices:

θ̂ = argmin
θ

∑
i<j

[Tij − Tij(θ)]
2. (A15)

This is useful when we initialize parameters θ for the matrix formed by the eigenvectors
of the empirical covariance matrix.

A.3.1.2. Derivatives with respect to the angular parameters. To compute the derivatives
ofT with respect to the angular parameters θpq, we first note that it is possible to rewrite
the recurrence step of equation (A9) as the following matrix product

T(L) = B(L)B(L−1) . . .B(3)B(2) (A16)

where

B(n) =

(
A(n) 0

0 I(L−n)

)
(A17)

is block diagonal, A(n) was defined by equation (A6) and I (L−n) is a unit matrix of
(L− n) dimensions.
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From the definition of A(n) we note that the terms θpq for p = 1, 2, . . . , q − 1 only

occur in the factor B (q) of equation (A16). This allows us to write the derivative of T
with respect to θpq as the matrix product:

∂T

∂θpq
= B(L)B(L−1) . . .

∂B(q)

∂θpq
. . .B(3)B(2) (A18)

where

∂B(q)

∂θpq
=

⎛
⎝∂A(q)

∂θpq
0

0 0

⎞
⎠ . (A19)

Therefore, the calculation of the derivative of T could be done with the following
three steps:

(a) Calculate the product B (q−1)B (q−2) . . .B (3)B (2).

(b) Calculate

∂B(q)

∂θpq
B(q−1) . . .B(3)B(2) =

⎛
⎝∂T(q)

∂θpq
0

0 0

⎞
⎠ . (A20)

(c) Calculate

∂T

∂θpq
= B(L)B(L−1) . . .B(q+1)

⎛
⎝∂T(q)

∂θpq
0

0 0

⎞
⎠ . (A21)

The q − 3 recurrence steps for step (a) can be carried out using the same recurrence
scheme described before for matrix T construction. For step (b), we need to evaluate

∂T(q)

∂θpq
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− sin θpqσ

(q)
kl k > p

− sin θpqt
(q)
kl − cos θpqz

(q)
kl k = p

0 k < p

(A22)

where the quantities

σ
(q)
kl =

∂z
(q)
kl

∂θpq
(A23)

can be obtained from (A12). Finally, for step (c), we follow L− q recurrence steps
described by equations (A11) and (A12) with the two exceptions:

z
(n)
1l = 0 ; 1 � l < n (A24)

z
(n)
k+1,n = 0 1 � k � n− 1. (A25)
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A.3.2. Parametrization in terms of the exponential of a skew-symmetric matrix. The
expression of the eigenvectors of C−1 in terms of Eulerian angles allows us to compute
the gradient of the likelihood with respect to them, as well as expressing it analytically.
In practice, we adopted another parametrization of C−1 to accelerate the evaluation of
the gradient. This new parametrization consists of expressing C−1 as the exponential
of a skew-symmetric matrix, that is a matrix X such that X = −X T.

A skew-symmetric matrix X of size L has L(L− 1)/2 independent values, and its
exponential is a special orthogonal matrix:

S = exp(X). (A26)

This is simply shown by the fact that exp(X )T = exp(X T) = exp(−X ) = exp(X )−1 and
det(S) = exp(TrX ) = 1 since TrX = 0 for a skew-symmetric matrix. Furthermore, it is
always possible to obtain a skew-symmetric matrix X from a special orthogonal matrix
S by inverting the exponential relation, X = logS [38].

The advantage of expressing S in this form is that X has L(L− 1)/2 entries that
can be varied independently. This allows us to perform the optimization over L(L− 1)/2
independent parameters, with derivatives with respect to the independent entries of X
being defined by

∂S

∂Xjk
= lim

h→0

1

h

(
exp(X+ hEjk)− exp(X)

)
(A27)

where E jk for j > k is defined as a skew-symmetric matrix that has only two non-zero
entries in positions (j, k) and (k, j):

Epq
jk = δpjδqk − δpkδqj. (A28)

It is not possible to give a simple analytical form to equation (A27). However, since
S is obtained through a simple algebraic expression (equation (A26)), it is possible to
compute its derivative with respect to entries of X through automatic differentiation
techniques [43]. We implemented this process using the Julia package Zygote.jl [39].

A.4. Homogeneous and symmetric binary tree

We define a tree as homogeneous if all of its branches have the same length. The sym-
metric and the binary character of a tree are understood as in the main text: binary
means that every non-leaf node of the tree has exactly two children, while symmetric
means that the two subtrees stemming from any non-leaf node have the exact same
topology.

Let us assume that the tree is symmetric, binary and completely homogeneous with
all branches having the length Δt. The covariance matrix for a homogeneous symmetric
binary tree with branches of length Δt, K = 2 branching levels and four leaves is

G =

⎛
⎜⎜⎝

C CΛ2Δt CΛ4Δt CΛ4Δt

CΛ2Δt C CΛ4Δt CΛ4Δt

CΛ4Δt CΛ4Δt C CΛ2Δt

CΛ4Δt CΛ4Δt CΛ2Δt C

⎞
⎟⎟⎠ . (A29)
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The associated matrix Ga = z(ρa, γ, Δt) defined in equation (A29) becomes

Ga = ρ−1
a

⎛
⎜⎜⎝

1 e−2γρaΔt e−4γρaΔt e−4γρaΔt

e−2γρaΔt 1 e−4γρaΔt e−4γρaΔt

e−4γρaΔt e−4γρaΔt 1 e−2γρaΔt

e−4γρaΔt e−4γρaΔt e−2γρaΔt 1

⎞
⎟⎟⎠ . (A30)

Matrices such as the one in (A30) are called hyper-geometric. For dimensions 2K ,
they have K + 1 different eigenvalues given by:

λk(ρa, γ) = ρ−1
a ∗

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 +

k−1∑
l=1

2l−1e−2lγρaΔt − 2k−1e−2kγρaΔt, for k ∈ [1,K]

1 +

K∑
l=1

2l−1e−2lγρaΔt, for k = K + 1

(A31)

where λK+1 � λK . . . � λ1. For k < K + 1, the degeneracy of eigenvalue λk is dk = 2K−k.
The associated eigenvectors are independent of the parameter ρa and reflect the events in
the phylogenetic tree. Each eigenvector �uk of length 2K captures the duplication events
in the (K + 1− k)st generation:

�uk =

⎧⎪⎪⎨
⎪⎪⎩
(

2k−1︷ ︸︸ ︷
1, . . . , 1,

2k−1︷ ︸︸ ︷
−1, . . . ,−1︸ ︷︷ ︸
Q

, 0, . . . , 0)
⋃

Γ(�uk), for k ∈ [1,K]

(1, 1, 1, . . . , 1, 1, 1), for k = K + 1

where Γ(�uk) represents the dk combinations obtained by shifting the block of length
Q = 2k, generating all eigenvectors corresponding to the eigenvalue λk. These eigenvec-
tors are orthogonal to each other, and can be used to construct the eigenvectors of the
matrix G from equation (15)

To compute the gradient of the likelihood, derivatives of λk(ρa, γ) with respect to ρa
and γ can be directly obtained from expression (A31).

A.5. Optimization scheme

The proposed inference scheme was transformed into a multidimensional nonlinear opti-
mization problem for which we can compute the gradient of the optimized quantity L.
To solve it, we used a variant of the QNMs. The Newton method differs from the clas-
sical gradient ascent technique in that it makes use of the matrix of the second-order
derivatives of the quantity to maximize, that is the Hessian matrix H . The main feature
in QNM when compared to the standard Newton method is that the Hessian matrix is

only approximated. When maximizing the likelihood L with respect to parameters �θ,

the direction of the change of parameters Δ�θ is determined by

Δ�θ = Ĥk∇L(�θk),

where �θk and Ĥk respectively represent the parameter values and the approximation
of the Hessian at the kth iteration. Various QNMs differ in their approximation of
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the Hessian matrix. We used the limited memory Broyden–Fletcher–Goldfarb–Shanno
algorithm [44, 45], which chooses Ĥk as a positive definite matrix where

Ĥk+1 = Ĥk +
yky

T
k

ykΔθk
− ĤkΔθk(ĤkΔθk)

T

ΔθTk ĤkΔθk
with yk = ∇L(�xk + 1)−∇L(�xk).

Implementation of the method was done using the NLopt package [41].

A.6. Supporting figures

See figures 5–8 and 10.

Figure 5. Relative l2-error between the empirical covariance matrix calculated from
an i.i.d. sample and the true covariance matrix, for system sizes L = 4 and L = 10,
as a function of the sample size N . An effective i.i.d. sample size N eff can be
attributed to each value of the l2-error. By comparing values of the l2-error with
results in figures 3 and 9, we can formulate the gain in accuracy in terms of a gain in
effective sample size. The dashed vertical line corresponds to the number of leaves
of the tree used in the simulations.
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Figure 6. Inferred γ values as a function of real γ, for system size L = 4. γemp

is the value obtained by the process described in appendix A.2. γmax is the value
inferred by the maximum-likelihood calculation. The inset represents the ratio of
both inferred parameters γemp or γmax to the real γ.

Figure 7. Pearson correlation between empirical/maximum-likelihood covariance
matrices and the true covariance matrix as a function of γ/γd. The inset plot
represents the ratio between the person correlation for the maximum-likelihood
covariance matrix and the one for the empirical covariance matrix.
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Figure 8. Inferred γ values as a function of real γ, for system size L = 10. γemp

is the value obtained by the process described in appendix A.2. γmax is the value
inferred by the maximum-likelihood calculation. The inset represents the ratio of
both inferred parameters γemp or γmax to the real γ.

Figure 9. (Left) Relative l2-error between empirical or maximum-likelihood covari-
ance matrices and the true covariance matrix as a function of γ/γd. (Right) Relative
l2-error between empirical/maximum-likelihood coupling matrices and the true cou-
pling matrix as a function of γ/γd. Logarithmic scale is chosen for the y-axis because
of large values of the error at low γ. The inset shows the ratio between the two
errors. For system size L = 10.
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Figure 10. Quality of prediction of interactions for different values of γ and system
size L = 10. Interactions are defined as non-zero elements of the coupling matrix. In
the L = 10 case, there are 45 possible interactions. Predictions are made by taking
the largest elements (in absolute terms) of the inferred coupling matrix. The PPV
is the fraction of correctly predicted contacts for a given number of predictions. The
perfect prediction is the one that would be made using the real coupling matrix J .
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[28] Bastide P, Ané C, Robin S and Mariadassou M 2018 Inference of adaptive shifts for multivariate correlated

traits Syst. Biol. 67 662–80
[29] Mitov V, Bartoszek K, Asimomitis G and Stadler T 2020 Fast likelihood calculation for multivariate Gaussian

phylogenetic models with shifts Theor. Popul. Biol. 131 66–78
[30] Jones D T, Buchan D W A, Cozzetto D and Pontil M 2012 PSICOV: precise structural contact prediction using

sparse inverse covariance estimation on large multiple sequence alignments Bioinformatics 28 184–90
[31] Barton J P, Cocco S, De Leonardis E and Monasson R 2014 Large pseudocounts and L2-norm penalties are

necessary for the mean-field inference of Ising and Potts models Phys. Rev. E 90
[32] Baldassi C, Zamparo M, Feinauer C, Procaccini A, Zecchina R, Weigt M and Pagnani A 2014 Fast and accu-

rate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction
partners PLoS One 9 e92721

[33] Morcos F et al 2011 Direct-coupling analysis of residue coevolution captures native contacts across many protein
families Proc. Natl Acad. Sci. 108 E1293–301

[34] Figliuzzi M, Jacquier H, Schug A, Tenaillon O and Weigt M 2016 Coevolutionary landscape inference and the
context-dependence of mutations in beta-lactamase TEM-1 Mol. Biol. Evol. 33 268–80

[35] Russ W P et al 2020 An evolution-based model for designing chorismate mutase enzymes Science 369 440–5
[36] Singh R, Ghosh D and Adhikari R 2017 Fast Bayesian inference of the multivariate Ornstein–Uhlenbeck process

(arXiv:1706.04961)
[37] Raffenetti R C and Ruedenberg K 1970 Parametrization of an orthogonal matrix in terms of generalized Eulerian

angles Int. J. Quantum Chem. 4 625–34
[38] Shepard R, Brozell S R and Gidofalvi G 2015 The representation and parametrization of orthogonal matrices J.

Phys. Chem. A 119 7924–39
[39] Innes M 2018 Don’t unroll adjoint: differentiating SSA-form programs (arXiv:1810.07951)
[40] Petersen K B and Pedersen M S 2015 The Matrix Cookbook

https://doi.org/10.1088/1742-5468/ac06c2 29

https://doi.org/10.1016/j.physrep.2017.11.003
https://doi.org/10.1016/j.physrep.2017.11.003
https://doi.org/10.1016/j.physrep.2017.11.003
https://doi.org/10.1016/j.physrep.2017.11.003
https://doi.org/10.1016/j.physa.2012.10.046
https://doi.org/10.1016/j.physa.2012.10.046
https://doi.org/10.1016/j.physa.2012.10.046
https://doi.org/10.1016/j.physa.2012.10.046
https://doi.org/10.1140/epjb/e2015-60282-3
https://doi.org/10.1140/epjb/e2015-60282-3
https://doi.org/10.1140/epjb/e2015-60282-3
https://doi.org/10.1140/epjb/e2015-60282-3
https://doi.org/10.1103/physrev.106.620
https://doi.org/10.1103/physrev.106.620
https://doi.org/10.1093/nar/gky989
https://doi.org/10.1093/nar/gky989
https://doi.org/10.1093/nar/gky989
https://doi.org/10.1093/nar/gky989
https://doi.org/10.1093/nar/gky092
https://doi.org/10.1093/nar/gky092
https://doi.org/10.1146/annurev.es.19.110188.002305
https://doi.org/10.1146/annurev.es.19.110188.002305
https://doi.org/10.1146/annurev.es.19.110188.002305
https://doi.org/10.1146/annurev.es.19.110188.002305
https://doi.org/10.1088/1367-2630/16/12/123017
https://doi.org/10.1088/1367-2630/16/12/123017
https://doi.org/10.3390/e21111090
https://doi.org/10.3390/e21111090
https://doi.org/10.1073/pnas.1711913115
https://doi.org/10.1073/pnas.1711913115
https://doi.org/10.1073/pnas.1711913115
https://doi.org/10.1073/pnas.1711913115
https://doi.org/10.1103/physrev.36.823
https://doi.org/10.1103/physrev.36.823
https://doi.org/10.1103/physrev.36.823
https://doi.org/10.1103/physrev.36.823
https://doi.org/10.1111/j.1558-5646.1997.tb01457.x
https://doi.org/10.1111/j.1558-5646.1997.tb01457.x
https://doi.org/10.1111/j.1558-5646.1997.tb01457.x
https://doi.org/10.1111/j.1558-5646.1997.tb01457.x
https://doi.org/10.1371/journal.pbio.0020132
https://doi.org/10.1371/journal.pbio.0020132
https://doi.org/10.1111/j.1558-5646.2008.00412.x
https://doi.org/10.1111/j.1558-5646.2008.00412.x
https://doi.org/10.1111/j.1558-5646.2008.00412.x
https://doi.org/10.1111/j.1558-5646.2008.00412.x
https://doi.org/10.1016/j.jtbi.2012.08.005
https://doi.org/10.1016/j.jtbi.2012.08.005
https://doi.org/10.1016/j.jtbi.2012.08.005
https://doi.org/10.1016/j.jtbi.2012.08.005
https://doi.org/10.1073/pnas.0812009106
https://doi.org/10.1073/pnas.0812009106
https://doi.org/10.1073/pnas.0812009106
https://doi.org/10.1073/pnas.0812009106
https://doi.org/10.1093/molbev/mst190
https://doi.org/10.1093/molbev/mst190
https://doi.org/10.1093/molbev/mst190
https://doi.org/10.1093/molbev/mst190
https://doi.org/10.1016/j.celrep.2017.07.033
https://doi.org/10.1016/j.celrep.2017.07.033
https://doi.org/10.1016/j.celrep.2017.07.033
https://doi.org/10.1016/j.celrep.2017.07.033
https://doi.org/10.1093/sysbio/syy005
https://doi.org/10.1093/sysbio/syy005
https://doi.org/10.1093/sysbio/syy005
https://doi.org/10.1093/sysbio/syy005
https://doi.org/10.1016/j.tpb.2019.11.005
https://doi.org/10.1016/j.tpb.2019.11.005
https://doi.org/10.1016/j.tpb.2019.11.005
https://doi.org/10.1016/j.tpb.2019.11.005
https://doi.org/10.1093/bioinformatics/btr638
https://doi.org/10.1093/bioinformatics/btr638
https://doi.org/10.1093/bioinformatics/btr638
https://doi.org/10.1093/bioinformatics/btr638
https://doi.org/10.1103/physreve.90.012132
https://doi.org/10.1371/journal.pone.0092721
https://doi.org/10.1371/journal.pone.0092721
https://doi.org/10.1073/pnas.1111471108
https://doi.org/10.1073/pnas.1111471108
https://doi.org/10.1073/pnas.1111471108
https://doi.org/10.1073/pnas.1111471108
https://doi.org/10.1093/molbev/msv211
https://doi.org/10.1093/molbev/msv211
https://doi.org/10.1093/molbev/msv211
https://doi.org/10.1093/molbev/msv211
https://doi.org/10.1126/science.aba3304
https://doi.org/10.1126/science.aba3304
https://doi.org/10.1126/science.aba3304
https://doi.org/10.1126/science.aba3304
https://arxiv.org/abs/1706.04961
https://doi.org/10.1002/qua.56004072
https://doi.org/10.1002/qua.56004072
https://doi.org/10.1002/qua.56004072
https://doi.org/10.1002/qua.56004072
https://doi.org/10.1021/acs.jpca.5b02015
https://doi.org/10.1021/acs.jpca.5b02015
https://doi.org/10.1021/acs.jpca.5b02015
https://doi.org/10.1021/acs.jpca.5b02015
https://arxiv.org/abs/1810.07951
https://doi.org/10.1088/1742-5468/ac06c2


J.S
tat.

M
ech.

(2021)
073501

Global multivariate model learning from hierarchically correlated data

[41] Johnson S G 2014 The NLopt nonlinear-optimization package http://github.com/stevengj/nlopt
[42] Figliuzzi M, Barrat-Charlaix P and Weigt M 2018 How pairwise coevolutionary models capture the collective

residue variability in proteins? Mol. Biol. Evol. 35 1018–27
[43] Griewank A 1989 On automatic differentiation Mathematical Programming (Recent Developments and

Applications) (Dordrecht: Kluwer) pp 83–108
[44] Nocedal J 1980 Updating quasi-Newton matrices with limited storage Math. Comput. 35 773
[45] Liu D C and Nocedal J 1989 On the limited memory BFGS method for large scale optimization Math. Program.

45 503–28

https://doi.org/10.1088/1742-5468/ac06c2 30

http://github.com/stevengj/nlopt
https://doi.org/10.1093/molbev/msy007
https://doi.org/10.1093/molbev/msy007
https://doi.org/10.1093/molbev/msy007
https://doi.org/10.1093/molbev/msy007
https://doi.org/10.1090/s0025-5718-1980-0572855-7
https://doi.org/10.1090/s0025-5718-1980-0572855-7
https://doi.org/10.1007/bf01589116
https://doi.org/10.1007/bf01589116
https://doi.org/10.1007/bf01589116
https://doi.org/10.1007/bf01589116
https://doi.org/10.1088/1742-5468/ac06c2

	Global multivariate model learning from hierarchically correlated data
	Contents
	1.  Introduction
	2.  The multivariate Ornstein-Uhlenbeck process
	3.  Statement of the problem
	4.  Methods
	4.1.  Calculation of the likelihood
	4.2.  Maximizing the likelihood

	5.  Results
	6.  Discussion
	Code availability
	Acknowledgments
	A.1.  Generating artificial data
	A.2.  Empirical parameters
	A.2.1.   Eigenvalues and eigenvectors of 
	A.2.2.   Timescale parameter 

	A.3.  Parametrizations of eigenvectors
	A.3.1.Parametrization using generalized Eulerian angles.
	A.3.1.1.   Determination of parameters for a given matrix.
	A.3.1.2.   Derivatives with respect to the angular parameters. 

	A.3.2.Parametrization in terms of the exponential of a skew-symmetric matrix.

	A.4.  Homogeneous and symmetric binary tree
	A.5.  Optimization scheme
	A.6.  Supporting figures

	References


