Ancestral protein reconstruction using autoregressive generative models

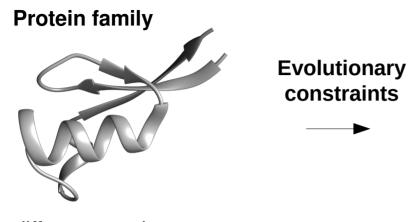
Matteo De Leonardis, Andrea Pagnani, Pierre Barrat-Charlaix

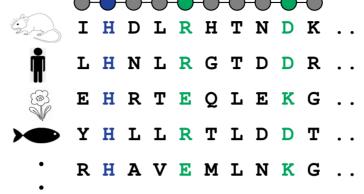
DISAT, Politecnico di Torino

Collaborators

Andrea Pagnani (PoliTo) Matteo De Leonardis (PoliTo)

Multiple Sequence Alignment (MSA)





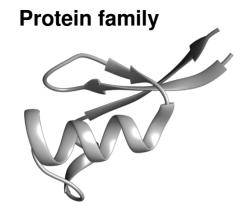
HKLEEANKA..

In different species:

- ~ same structure
- ~ same function
- Regulation (DNA-binding, protein inhibitor...)
- Signaling (two-component signaling)
- Fundamental (ribosome...)
- Antibiotic resistance

Multiple Sequence Alignment (MSA)

Learning



Evolutionary constraints

I H D L R H T N D K ...

L H N L R G T D D R ...

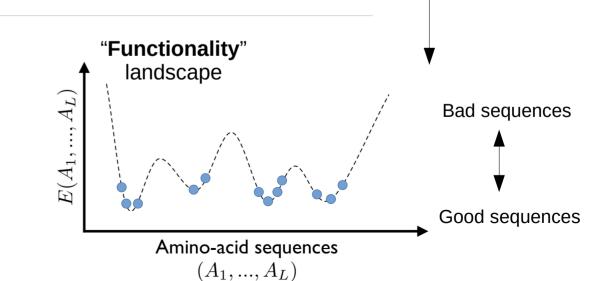
E H R T E Q L E K G ...

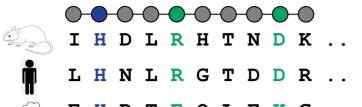
RHAVEMLNKG..

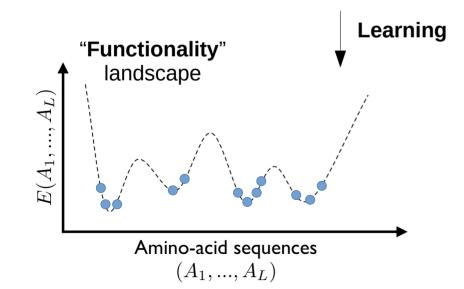
. QHKLEEANKA..

In different species:

- ~ same structure
- ~ same function
- Regulation (DNA-binding, protein inhibitor...)
- Signaling (two-component signaling)
- Fundamental (ribosome...)
- Antibiotic resistance



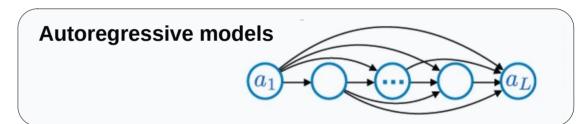




Potts model

Potts model Couplings Fields
$$P(a_1,\ldots,a_N) = rac{1}{Z} \exp \left(\sum_{i,j=1}^L J_{ij}(a_i,a_j) + \sum_{i=1}^L h_i(a_i)
ight)$$

Fields



Deep learning

Variational autoencoders (VAE) Transformers (MSATransformer, ESM, ...)



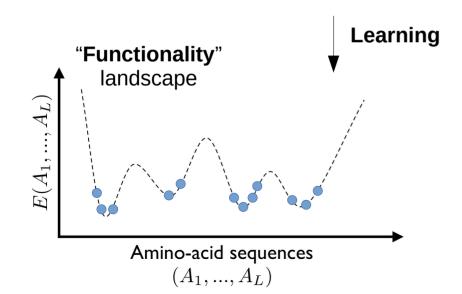
- YHLLRTLDDT.
- RHAVEMLNKG..
 - Q H K L E E A N K A ...

Used for

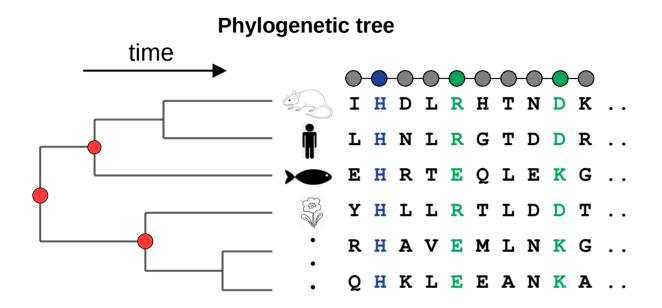
- Contacts in 3D structure
- Effect of mutations
- Generative models

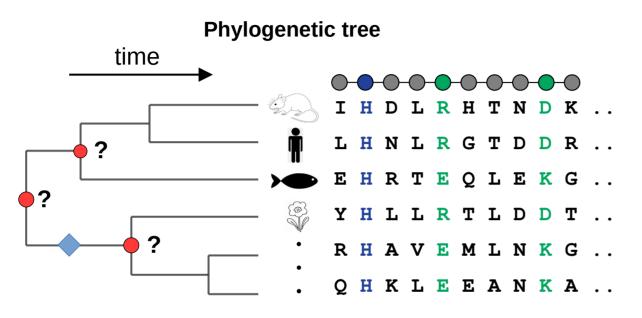
Design functional synthetic proteins!

[Russ et. al. Science 2020]



Key ingredient: Epistasis→ Columns of the MSA are not independent



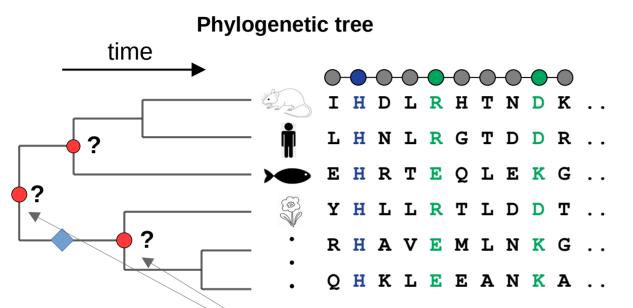


Why?

- What were ancient proteins like?
- Sequence Function relationship

Applications to protein design

- Thermostable proteins
- Proteins with given specificity

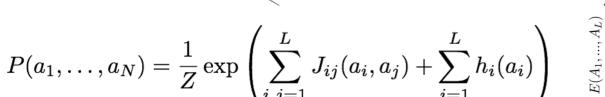


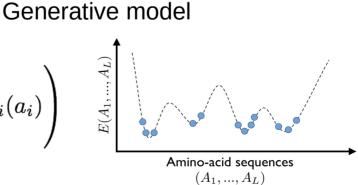
Why?

- What were ancient proteins like?
- Sequence Function relationship

Applications to protein design

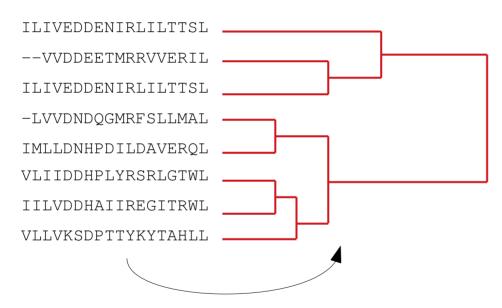
- Thermostable proteins
- Proteins with given specificity





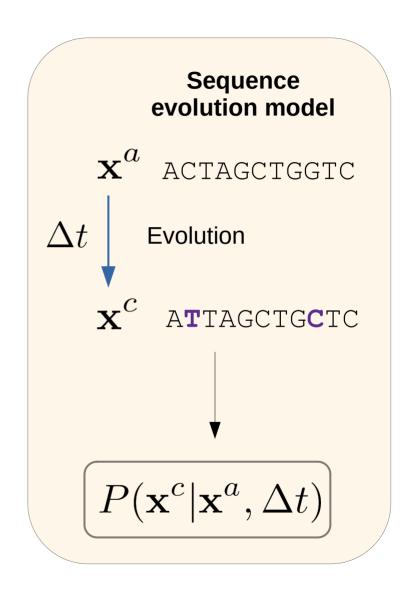
Phylogenetic tree

topology + branch length

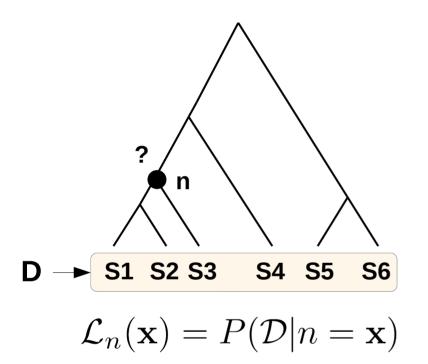


Phylogenetic inference

- IQ-TREE [Minh et. al., MBE 2020]
- Fasttree [Price et. al., PLOS 2010]
- BEAST [Suchard et. al., Virus Evol. 2018]

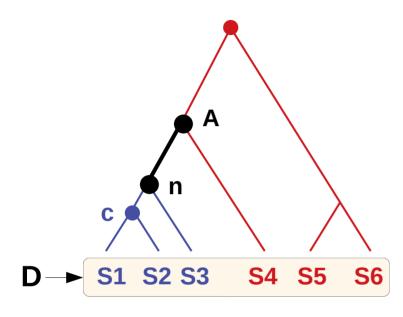


Inference of internal states: Felsenstein's algorithm



Inference algorithm

"Down" likelihood



$$\mathcal{L}_n^d(\mathbf{x})$$
 $ightharpoonup$ Probability of data below $\emph{\textbf{n}}$, if $\emph{\textbf{n}}$ is in state $\emph{\textbf{x}}$

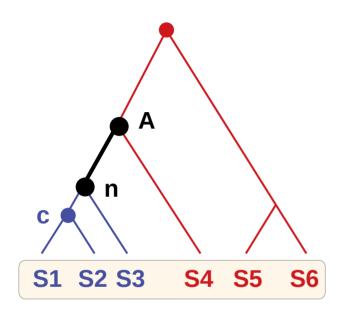
If
$${\it n}$$
 is leaf $\longrightarrow {\cal L}^d_{\rm leaf}({\bf x}) = \delta({\bf x},{\bf S})$

Otherwise
$$\longrightarrow$$
 $\mathcal{L}_n^d(\mathbf{x}) = \prod_{c \in \mathcal{C}(n)} \sum_{\{\mathbf{z}\}} P(\mathbf{z}|\mathbf{x}, t_c) \mathcal{L}_c^d(\mathbf{z})$

$$\mathcal{L}_n(\mathbf{x}) = P(\mathcal{D}|n = \mathbf{x})$$
 Here $P(\mathbf{S}_3|\mathbf{x}, t_3) \cdot \sum_{\{\mathbf{z}\}} P(\mathbf{z}|\mathbf{x}, t_c) \mathcal{L}_c^d(\mathbf{z})$

wo One pass up from the leaves to compute $\, {\mathcal L}_n^d({f x}) \,$

Inference algorithm



$$\mathcal{L}_n(\mathbf{x}) = P(\mathcal{D}|n = \mathbf{x})$$

"Down" likelihood

$$\mathcal{L}_n^d(\mathbf{x}) = \prod_{c \in \mathcal{C}(n)} \sum_{\{\mathbf{z}\}} P(\mathbf{z}|\mathbf{x}, t_c) \mathcal{L}_c^d(\mathbf{z})$$

"Up" likelihood

 $\mathcal{L}_n^u(\mathbf{y})$ robability of data above \mathbf{n} , if \mathbf{A} is in state \mathbf{y} where *A* ~ *ancestor(n)*

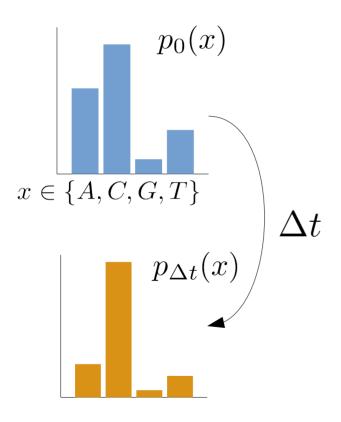
$$\mathcal{L}_n^u(\mathbf{y}) = \sum_{\{\mathbf{z}\}} P(\mathbf{y}|\mathbf{z}, t_A) \mathcal{L}_A^u(\mathbf{z}) \cdot \prod_{c \in \mathcal{C}(A)} \sum_{\{\mathbf{z}\}} P(\mathbf{z}|\mathbf{y}, t_c) \mathcal{L}_c^d(\mathbf{y})$$

$$\mathcal{L}_n(\mathbf{x}) = \sum_{n \in \mathbb{N}} \mathcal{L}_n^u(\mathbf{y}) P(\mathbf{x}|\mathbf{y},t_n) \mathcal{L}_n^d(\mathbf{x})$$
• linear in number of nodes depends only on evolution

- depends only on evolution model

Sequence evolution model

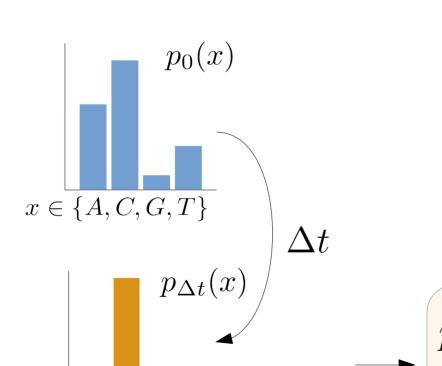
Focus on one position: $x \in \{A, C, G, T\}$



Sequence evolution model

Continuous time Markov chain

Focus on one position: $x \in \{A, C, G, T\}$



$$\mathbf{X} = \mathbf{A} \qquad q_{AG} \mathbf{T}$$

$$\mathbf{C}$$

$$q_{AG} \mathbf{G}$$

$$q_{AT} \mathbf{T}$$

$$Q = \begin{pmatrix} -q_A & q_{CA} & q_{GA} & q_{TA} \\ q_{AC} & -q_C & q_{GC} & q_{TC} \\ q_{AG} & q_{CG} & -q_G & q_{TG} \\ q_{AT} & q_{CT} & q_{GT} & -q_T \end{pmatrix}$$

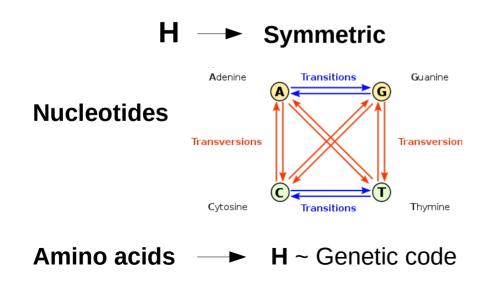
$$\dot{p} = p \cdot \mu Q$$

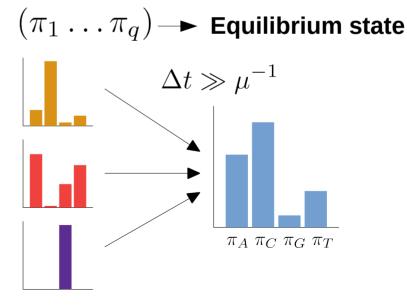
$$p_{\Delta t} = p_0 \cdot e^{\mu \Delta t \cdot Q}$$

Transition rate matrix Q

Reversibility: $\pi_x P(y|x,t) = \pi_y P(x|y,t)$

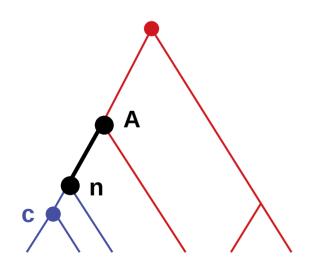
If reversibility
$$Q = \mathbf{H} \cdot \begin{pmatrix} \pi_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \pi_q \end{pmatrix}$$
 • Possibilities of mutations • Equilibrium distribution





Independent-site reconstruction

$$p_{\Delta t} = p_0 \cdot e^{\mu \Delta t \cdot Q}$$



One Q_i per sequence position i

Reconstruct for one position i

"Down"
$$\left| \mathcal{L}^d_{x,i}(x_i) = \prod_{c \in \mathcal{C}(n)} \sum_{z_i=1}^q \left(e^{Q_i t_c} \right)_{x_i z_i} \mathcal{L}^d_c(z_i) \right|$$

$$\mathcal{L}_n(x_i) = P(\mathcal{D}|n_i = x_i)$$

How do we find the right Q matrices?

Independent-site reconstruction

[Jones et al., 1992] [Le and Gascuel, 2008]

$$p_{\Delta t} = p_0 \cdot e^{\mu \Delta t \cdot Q}$$

$$Q = \mathbf{H} \cdot \begin{pmatrix} \pi_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \pi_q \end{pmatrix}$$

State of the art

Q

- Same for all positions
- Fixed matrix, pre-learned (JTT, LG, ...)

 μ

Can change across positions. Typically

- Four rates $\{\mu_1,\ldots,\mu_4\}$
- Proportion of invariable sites $\mu=0$

Drawbacks

- Consider positions independently
- **Ignores** functional constraints

Independent-site reconstruction

[Jones et al., 1992] [Le and Gascuel, 2008]

$$p_{\Delta t} = p_0 \cdot e^{\mu \Delta t \cdot Q}$$

$$Q = \mathbf{H} \cdot \begin{pmatrix} \pi_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \pi_q \end{pmatrix}$$

State of the art

- Fixed matrix, pre-learned (JTT, LG, ...)
- μ Can change across positions. Typically
 - Four rates $\{\mu_1,\ldots,\mu_4\}$
 - Proportion of invariable sites $\mu = 0$

Drawbacks

- Consider positions independently
- **Ignores** functional constraints

Propagator?

Generative sequence model ->

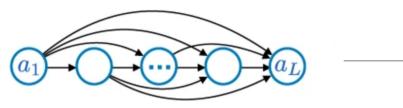
 $P(a_1, \dots, a_N) = \frac{1}{Z} \exp \left(\sum_{i,j=1}^{L} J_{ij}(a_i, a_j) + \sum_{i=1}^{L} h_i(a_i) \right)$

P is not factorized

Evolution with autoregressive models

Autoregressive model

$$P(a_1 \dots a_L) = \prod_{i=1}^{L} p_i(a_i | a_1 \dots a_{i-1})$$



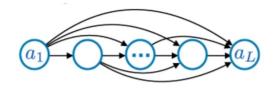
ArDCA
$$\longrightarrow p(a_i|a < i) \propto \exp\left(\sum_{j < i} J_{ij}(a_i, a_j) + h_i(a_i)\right)$$

- Easy to infer (from alignment)
- Interpretable (Jij ~ contacts)
- Good generative properties

[Trinquier et. al., Nature Comm 2021]

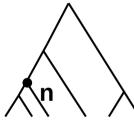
Evolution with autoregressive models

Autoregressive model



$$P(\mathbf{a}) = \prod_{i=1}^{L} p_i(a_i|a_{< i})$$

Given the context $a_{< i} = a_1 \dots a_{i-1}$ we know the equilibrium frequencies for a_i



$$a_{\leq i}^n = a_1^n \dots a_{i-1}^n$$

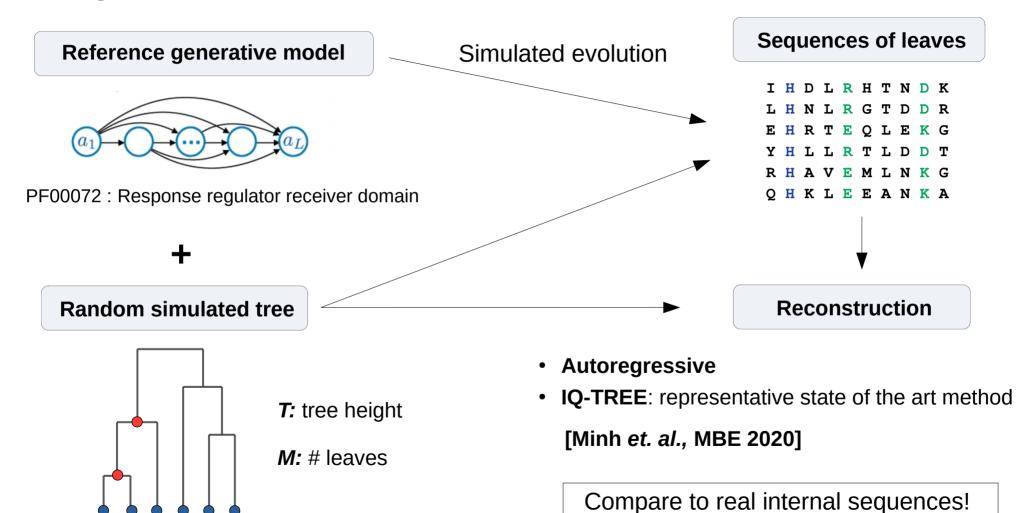
Suppose we reconstructed *i-1* positions \longrightarrow Equilibrium frequencies $p_i(a_i|a_{< i}^n)$ \longrightarrow $a_{< i}^n = a_1^n \dots a_{i-1}^n$

Evolution towards n for position i

- One position at a time: almost factorized
- Use knowledge of functional constraints
- **Cost**: need data to infer model

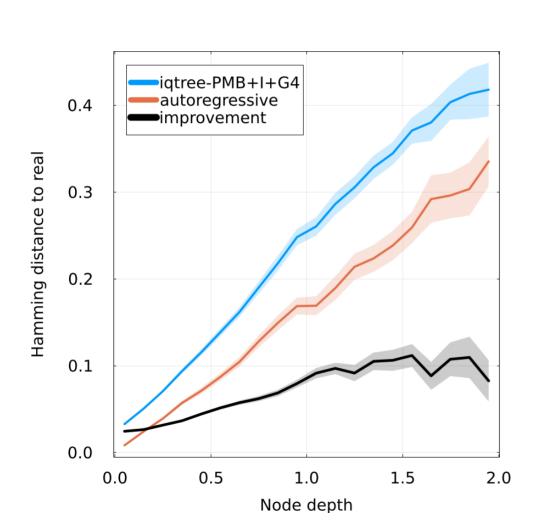
$$Q_i^{\to n} = \mathbf{H} \cdot \begin{pmatrix} p_i(1|a_{< i}^n) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & p_i(q|a_{< i}^n) \end{pmatrix}$$

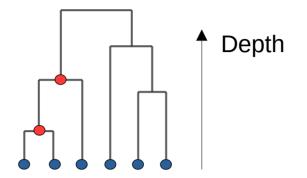
Testing on simulations



Results: Maximum Likelihood reconstruction

$$\mathcal{L}_n(\mathbf{x}) = P(\mathcal{D}|n = \mathbf{x})$$



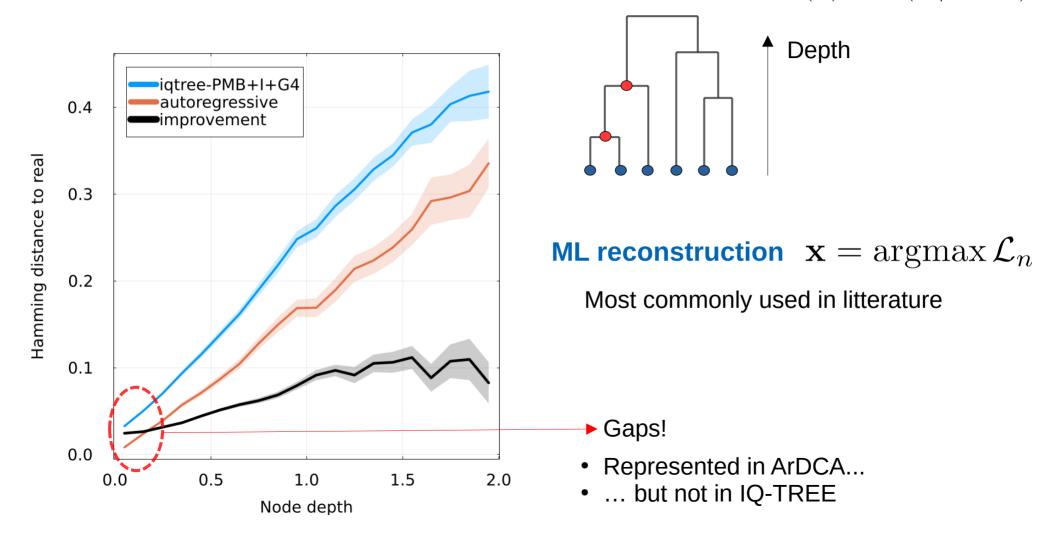


ML reconstruction $\mathbf{x} = \operatorname{argmax} \mathcal{L}_n$

Most commonly used in litterature

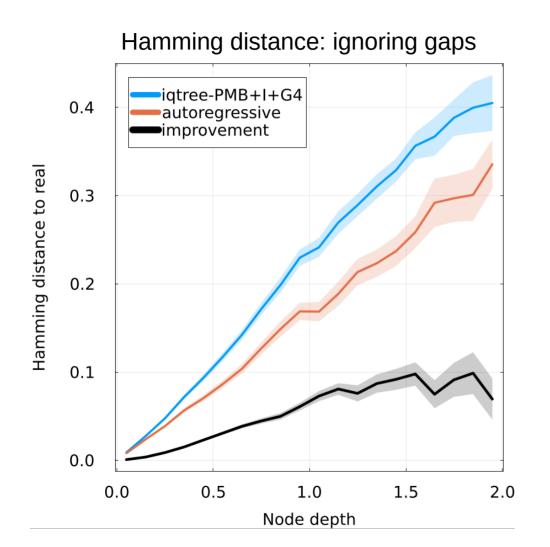
Results: Maximum Likelihood reconstruction

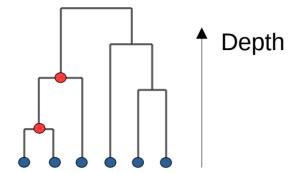
$$\mathcal{L}_n(\mathbf{x}) = P(\mathcal{D}|n = \mathbf{x})$$



Results: Maximum Likelihood reconstruction

$$\mathcal{L}_n(\mathbf{x}) = P(\mathcal{D}|n = \mathbf{x})$$



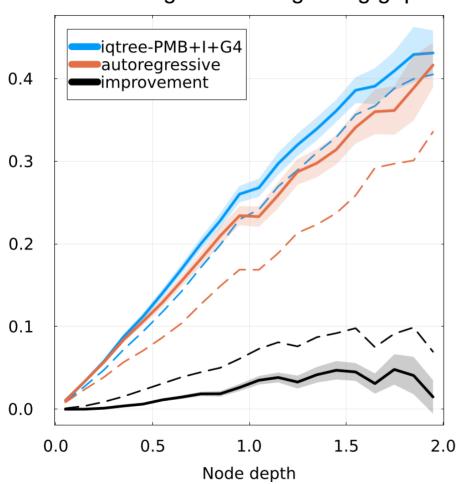


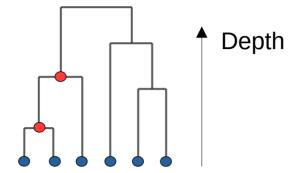
ML reconstruction $\mathbf{x} = \operatorname{argmax} \mathcal{L}_n$

Most commonly used in litterature

Results: ML + Bayesian reconstruction

$$\mathcal{L}_n(\mathbf{x}) = P(\mathcal{D}|n = \mathbf{x})$$





ML reconstruction $\mathbf{x} = \operatorname{argmax} \mathcal{L}_n$

Most commonly used in literature

Bayesian $P(\mathbf{x}) \propto \mathcal{L}_n(\mathbf{x})$

Rarely used in practice

Testing on simulations: with a different evolver?

Reference generative model

Simulated evolution

Another model that has epistasis

Potts model

$$P(a_1,\ldots,a_N) = rac{1}{Z} \exp\left(\sum_{i,j=1}^L J_{ij}(a_i,a_j) + \sum_{i=1}^L h_i(a_i)\right)$$

Sequences of leaves

 I
 H
 D
 L
 R
 H
 T
 N
 D
 K

 L
 H
 N
 L
 R
 G
 T
 D
 D
 R

 E
 H
 R
 T
 E
 Q
 L
 E
 K
 G

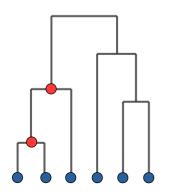
 Y
 H
 L
 L
 R
 T
 L
 D
 D
 T

 R
 H
 A
 V
 E
 M
 L
 N
 K
 A

 Q
 H
 K
 L
 E
 E
 A
 N
 K
 A

Reconstruction

Random simulated tree



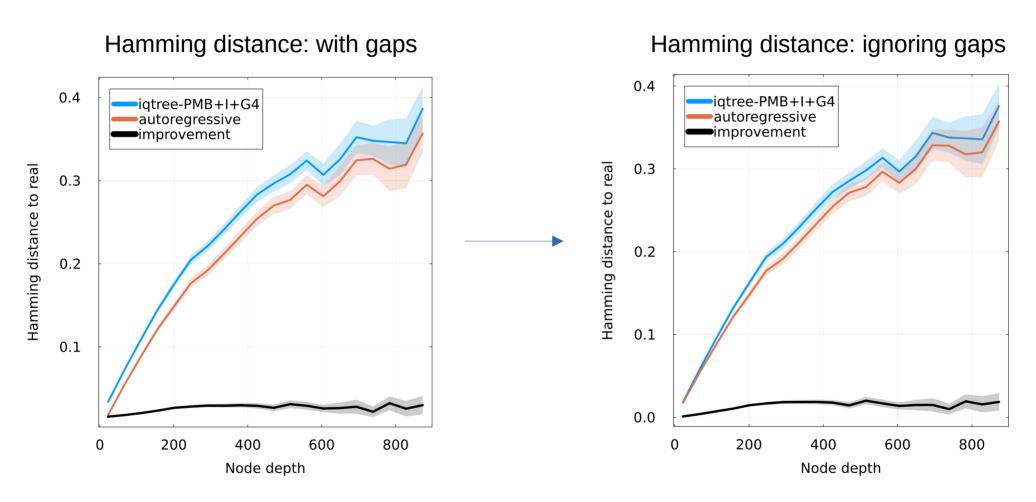
T: tree height

M: # leaves

- Autoregressive
- IQ-TREE: representative state of the art method [Minh et. al., MBE 2020]

Compare to real internal sequences!

Testing on simulations: with a different evolver?

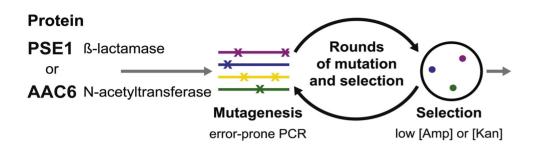


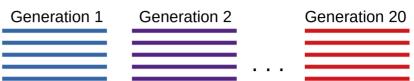
Systematic improvement, but small

Experimental data

[Stiffler et. al. Cell 2020]

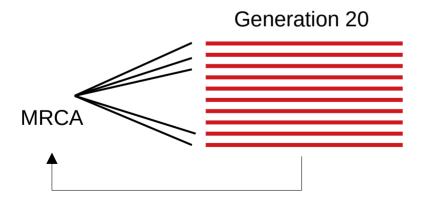
The sequence of MRCA is known!



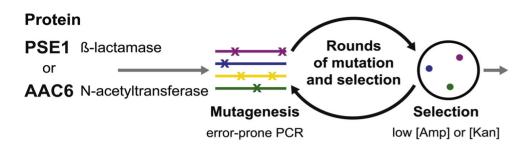


but not the tree...

Simplification: star tree

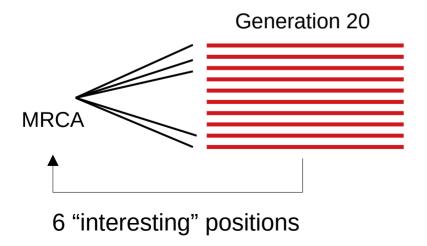


Experimental data

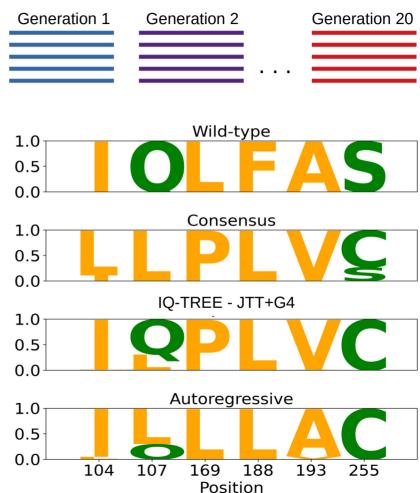


but not the tree...

Simplification: star tree



The sequence of MRCA is known!



ML reconstruction $\mathbf{x} = \operatorname{argmax} \mathcal{L}_n$

- Most commonly used in literature
- Experimentally: functional & highly thermostable
- Problem: Is the best sequence representative?

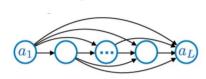
→ Biases

[Williams et. al., PLOS CB 2006]

Bayesian $P(\mathbf{x}) \propto \mathcal{L}_n(\mathbf{x})$

- Set of sequences at each internal node
- Rarely used in practice
- Sometimes non-functional
- More representative / Less subject to biases?

Reference generative model
$$P(a_1 \dots a_L) = \prod_i P(a_i | a_1 \dots a_{i-1})$$



Probability of reconstructed sequences?

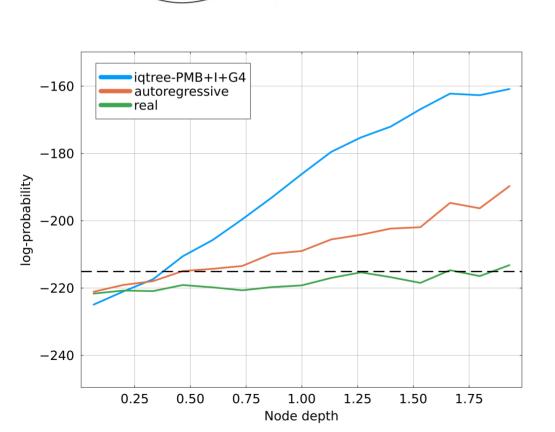
~proxy for function

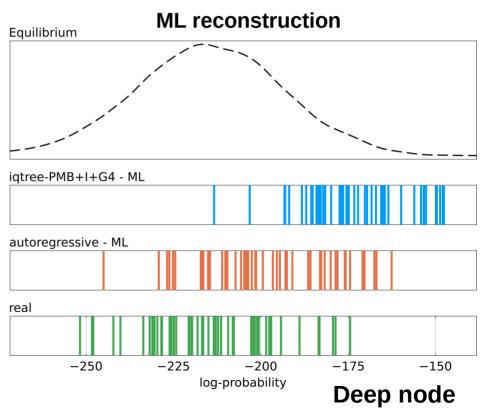
Reference generative model

$$P(a_1 \dots a_L) = \prod_{i} P(a_i | a_1 \dots a_{i-1}) \quad ---$$

Probability of reconstructed sequences?

~proxy for function





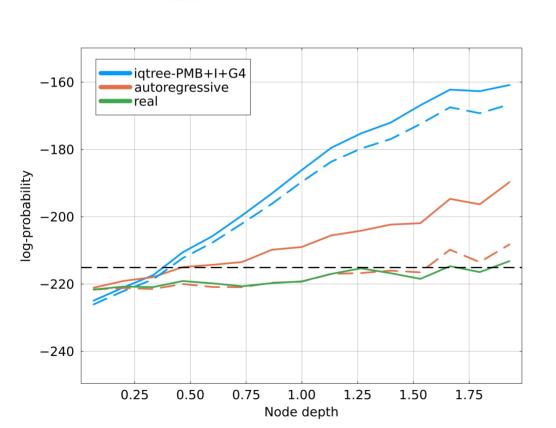
Is Bayesian less biased?

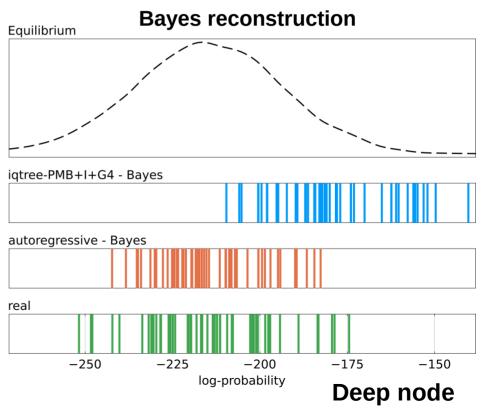
Reference generative model

$$P(a_1 \dots a_L) = \prod_i P(a_i | a_1 \dots a_{i-1}) \longrightarrow$$

Probability of reconstructed sequences?

~proxy for function





ML reconstruction $\mathbf{x} = \operatorname{argmax} \mathcal{L}_n$

- Most commonly used in literature
- Experimentally: functional & highly thermostable
- Problem: Is the best sequence representative?

[Williams et. al., PLOS CB 2006]

Bayesian $P(\mathbf{x}) \propto \mathcal{L}_n(\mathbf{x})$

- Set of sequences at each internal node
- Rarely used in practice
- Sometimes non-functional
- More representative / Less subject to biases?

For ML or site-independent model

Bias in log-probability

ML reconstruction $\mathbf{x} = \operatorname{argmax} \mathcal{L}_n$

- Most commonly used in literature
- Experimentally: functional & highly thermostable
- **Problem**: Is the best sequence representative?

→ Biases

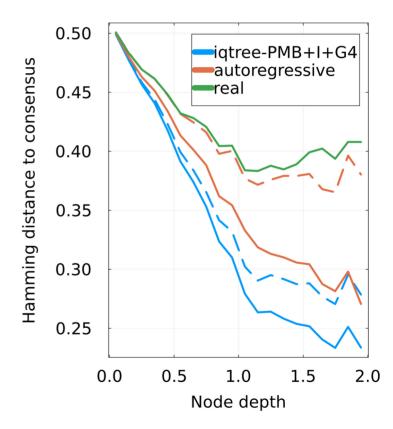
[Williams et. al., PLOS CB 2006]

Bayesian $P(\mathbf{x}) \propto \mathcal{L}_n(\mathbf{x})$

- Set of sequences at each internal node
- · Rarely used in practice
- Sometimes non-functional
- More representative / Less subject to biases?

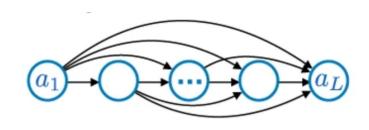
For ML or site-independent model

Bias in log-probability



Autoregressive model

$$P(a_1 \dots a_L) = \prod P(a_i | a_1 \dots a_{i-1}) \quad a_1$$



Autoregressive dynamics

$$P_i(a|b,a_{< i},t) = \underbrace{e^{-t}\delta_{ab}} + \underbrace{(1-e^{-t})p_i(a|a_{< i})}$$
 (if **H** uniform) No mut. >1 mut.

No mut. >1 mut
$$P(\mathbf{a}|\mathbf{b},t) = \prod_{i=1}^{L} P_i(a|b,a_{< i},t) \xrightarrow[t \to \infty]{} P(\mathbf{a})$$

Toy model Binary sequences, L=2

Global balance:
$$P(\mathbf{x}) = \sum_{\mathbf{y}} P(\mathbf{y}) P(\mathbf{x}|\mathbf{y})$$

$$x = (-+) \longrightarrow P(x) << 1$$

$$y = (++) \longrightarrow P(y) \sim 1/2$$

Frequent
$$\begin{array}{ccc} + + & & p_1(-) = 1/2 \\ - - & & p_2(+|-) \ll 1 \end{array}$$
 Rare

Toy model

Global balance:
$$P(\mathbf{x}) = \sum_{\mathbf{y}} P(\mathbf{y}) P(\mathbf{x}|\mathbf{y})$$

 $p_1(-) = 1/2$ $p_2(+|-) \ll 1$

$$x = (-+) \longrightarrow P(x) << 1$$

 $y = (++) \longrightarrow P(y) \sim 1/2$

$$P(\mathbf{x}|\mathbf{y},t) = \underbrace{(1-e^{-t})p_1(-)} \cdot \underbrace{\{e^{-t} + (1-e^{-t})p_2(+|-)\}}_{\text{Mut. at pos 1}} \bullet \mathbf{O(1)}$$

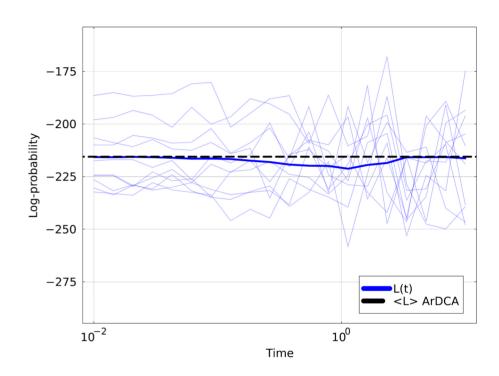
Global balance cannot hold!

Consequences

- Irreversibility
- Dynamics go out of equilibrium
- Very likely not realistic

But...

- Correct dynamics for t<<1 and t>>1
- Quantitatively small effect



Conclusion

Evolution based on a generative model

- Autoregressive architecture: "almost factorized"
- Converges to generative distribution at long times
- Caveats: not Markov, irreversible

Ancestral Sequence Reconstruction

- Better handling of gaps
- Systematic improvement over state of the art models (simulations)
- Improvement on directed evolution data

Biases of maximum likelihood

- ML reconstruction is "too good" → Bias to consensus!
- Bayesian reconstruction with good model: more representative!

Conclusion

Evolution based on a generative model

- Autoregressive architecture: "almost factorized"
- Converges to generative distribution at long times
- Caveats: not Markov, irreversible

Ancestral Sequence Reconstruction

- Better handling of gaps
- Systematic improvement over state of the art models (simulations)
- Improvement on directed evolution data

Biases of maximum likelihood

- ML reconstruction is "too good" → Bias to consensus!
- Bayesian reconstruction with good model: more representative!

Thank you for listening

Authors

Matteo De Leonardis (PoliTo) Andrea Pagnani (PoliTo) P.B.C

